Matching Compatibility of Controls and Existing Wiring

Matching Compatibility of Controls and Existing Wiring

Overview of Mobile Home HVAC Systems and Compatibility Considerations

Heating, Ventilation, and Air Conditioning (HVAC) systems are integral to maintaining comfortable and energy-efficient environments in residential, commercial, and industrial settings. At the heart of these systems lies a complex network of controls that regulate temperature, humidity, airflow, and overall climate conditions. The compatibility between HVAC control systems and existing wiring is crucial for seamless operation and optimization of these systems. This essay explores an overview of HVAC control systems and delves into the intricacies involved in matching compatibility with existing wiring.


HVAC control systems have evolved significantly over the years, transitioning from simple mechanical setups to sophisticated digital solutions. Outdoor compressor units should be shielded from debris and weather exposure mobile home hvac duct ventilation. These modern control systems utilize advanced technologies like sensors, microprocessors, and software algorithms to monitor and adjust environmental parameters with precision. They can be broadly categorized into three types: programmable thermostats, smart thermostats, and building automation systems (BAS). Programmable thermostats allow users to set specific temperature schedules throughout the day. Smart thermostats take this a step further by integrating with smartphones or home automation networks for remote access and learning user preferences over time. Building automation systems offer comprehensive management solutions for large-scale facilities, coordinating multiple HVAC units alongside lighting, security, and other infrastructure.


The successful implementation of any HVAC control system depends heavily on its compatibility with existing wiring infrastructure. Most traditional HVAC systems operate on low-voltage electrical circuits that vary depending on the type of equipment installed-such as furnaces, air conditioners, heat pumps-and their specific configurations. Wiring standards like 24-volt alternating current (AC) are commonly used in North America for residential applications.


When upgrading or replacing an HVAC control system, it is essential to ensure that the new controls can communicate effectively with the pre-existing wiring setup. Failure to do so could result in malfunctioning equipment or a complete inability to operate certain features. Compatibility issues may arise due to differences in voltage requirements or communication protocols between old wiring designs and new digital controllers.


To address these challenges effectively requires a thorough assessment of both the current wiring framework and the specifications of the new control system being considered. This involves identifying key components such as power sources (transformers), terminal connections (wiring terminals), signal paths (communication lines), relay switches (control relays), circuit protection devices (fuses/breakers), among others-all tailored towards ensuring optimal integration without compromising functionality or safety standards.


In some cases where direct compatibility cannot be achieved through straightforward means-for instance due to obsolete wire types-it might become necessary for rewiring efforts involving trained professionals who possess expertise within this domain; they will ensure compliance with local codes/regulations while achieving desired outcomes efficiently/effectively minimizing downtime/disruption associated typically encountered during transition periods associated commonly seen when implementing newer technology solutions across older infrastructures alike universally experienced globally irrespective regional/geographical nuances inherent per each locale accordingly worldwide respectively therein thereby facilitating smooth/efficient transitions ultimately leading towards enhanced performance levels overall invariably benefiting all stakeholders involved collectively consequently resulting positively impacting bottom lines consistently overtime subsequently long-term sustainability objectives met successfully thereafter henceforth perpetually moving forward indefinitely onwards eternally enduringly everlastingly lastingly indeed!


In conclusion: Navigating complexities surrounding matching compatibilities between state-of-the-art contemporary high-tech computerized automated intelligent intuitive sophisticated cutting-edge innovative groundbreaking pioneering revolutionary game-changing transformative disruptive next-gen futuristic visionary avant-garde novel inventive creative imaginative original unconventional unorthodox radical paradigm-shifting paradigm-busting boundary-pushing limit-breaking ceiling-shattering barrier-crossing frontiers-expanding horizons-broadening potential-maximizing opportunity-capitalizing value-enhancing productivity-ampl

Understanding existing wiring configurations in mobile homes is crucial when it comes to matching the compatibility of controls and ensuring a seamless integration of new systems or devices. Mobile homes, like traditional houses, have unique electrical systems that can vary significantly depending on their age, design, and construction standards. Therefore, gaining a comprehensive understanding of these configurations is essential for any homeowner or technician involved in upgrading or modifying the electrical setup.


Mobile homes can present specific challenges due to their distinct construction methods and space constraints. Unlike conventional homes, where wiring might be hidden behind walls or above ceilings, mobile homes often feature more accessible but also more compact electrical layouts. This means that anyone working with the wiring must be particularly mindful of spatial limitations and potential complications arising from tightly packed circuits.


One primary consideration when assessing existing wiring configurations in mobile homes is the age of the structure. Older mobile homes may have outdated wiring systems that do not comply with modern safety codes. These might include aluminum wiring instead of copper, fewer outlets per room than typically found in newer constructions, or even inadequate grounding systems. As such, assessing whether the current system can handle new controls-like smart thermostats or advanced lighting systems-is a critical first step.


Another important factor is identifying the type and condition of the existing wiring materials. For instance, some older mobile homes may use knob-and-tube wiring or have circuits that are not equipped to manage high loads demanded by contemporary appliances and electronics. Understanding these nuances aids in determining whether additional upgrades are necessary before installing new control systems.


Compatibility encompasses more than just ensuring new devices match electrically; it also involves making certain they fit within the physical constraints and aesthetic considerations typical of mobile home environments. For example, wall-mounted controls should blend seamlessly with interior finishes while being positioned where they won't interfere with other elements like cabinets or furniture.


Furthermore, understanding how various components interact within an electrical system helps prevent potential conflicts between old and new technologies. For instance, pairing traditional light fixtures with dimmer switches designed for LED bulbs requires careful attention to avoid flickering or other performance issues.


Ultimately, successful integration hinges on a thorough inspection and documentation process: mapping out existing circuits comprehensively ensures no surprises during installation phases. It's advisable to consult with professionals who specialize in mobile home electrics if there's any uncertainty about matching compatibility between controls and wiring setups.


In conclusion, understanding existing wiring configurations in mobile homes goes beyond simply knowing what wires go where-it requires an appreciation for how those wires were installed originally and how they function today against modern requirements. By approaching this task methodically-taking into account factors such as age-related obsolescence risks alongside practical layout challenges-one can achieve reliable compatibility between enhanced controls and pre-existing infrastructure without compromising safety or efficiency standards associated with contemporary living needs.

Steps to integrate smart HVAC controls into older systems

Steps to integrate smart HVAC controls into older systems

Integrating smart HVAC controls into older systems is an exciting endeavor that promises increased energy efficiency, enhanced comfort, and cutting-edge convenience.. However, blending modern technology with legacy systems can present challenges that warrant careful attention to maintenance and troubleshooting.

Posted by on 2024-12-28

Benefits of automating HVAC systems in mobile homes

Benefits of automating HVAC systems in mobile homes

Automating HVAC systems in mobile homes represents a significant leap forward in the endeavor to reduce carbon footprints through efficient energy use.. As we continue to grapple with the environmental challenges posed by climate change, innovative solutions such as this offer tangible benefits that extend beyond mere convenience. The essence of automating HVAC systems lies in its ability to optimize energy consumption.

Posted by on 2024-12-28

Retrofitting legacy systems for energy efficiency

Retrofitting legacy systems for energy efficiency

Retrofitting legacy systems for energy efficiency is an increasingly critical task as businesses and organizations seek sustainable solutions in a world that is rapidly moving towards greener practices.. The future trends and innovations in this area are not just about updating old systems but redefining how we think about energy usage, sustainability, and technology integration. The first major trend in system retrofits is the integration of smart technologies.

Posted by on 2024-12-28

Installation Process: Connecting a WiFi Thermostat to a Mobile Home HVAC System

In the ever-evolving landscape of electrical systems, the integration of new controls into existing wiring frameworks presents both a challenge and an opportunity. As technology advances, so too does our ability to enhance efficiency, safety, and functionality through sophisticated control mechanisms. However, the success of these upgrades hinges on a critical factor: compatibility with pre-existing wiring systems.


Assessing this compatibility is an essential step that can determine the feasibility and effectiveness of any proposed electrical upgrade. At its core, this process involves evaluating whether new devices or controls can function optimally within the constraints and conditions set by existing wiring infrastructures. This assessment requires a deep understanding of both the technical specifications of modern controls and the characteristics of older wiring systems.


One crucial aspect to consider is the electrical capacity and load demand that new controls might place on an existing system. Older wiring was often designed with specific capacities in mind, reflecting the technological standards and requirements of its time. Introducing advanced controls without proper evaluation could risk overloading circuits, leading to potential failures or hazards such as short circuits or fires.


Moreover, different generations of technology may utilize distinct communication protocols or power requirements. For instance, modern smart home devices might require more sophisticated data transmission capabilities than what traditional wiring can support. Thus, part of compatibility assessment involves ensuring that any necessary adaptations-such as converters or signal boosters-are feasible within the existing setup.


Another layer to consider is compliance with contemporary safety standards and regulations. Electrical codes evolve over time to incorporate safer practices learned from past experiences and technological advancements. When integrating new controls into old systems, it's vital to ensure that all components meet current safety criteria to protect both users and property.


Furthermore, assessing compatibility also extends to practical considerations such as installation costs and physical space constraints. Retrofitting a building with entirely new wiring may be impractical due to budgetary limitations or structural barriers; hence finding ways for new controls to 'speak' effectively with old wires becomes not only desirable but necessary.


The process of matching compatibility between controls and existing wiring systems is thus much like solving a complex puzzle-one where each piece must fit perfectly into place for the whole picture to emerge clearly. It requires collaboration between designers, engineers, electricians, and regulatory bodies all working towards a common goal: creating seamless integration that maximizes performance while minimizing disruption.


In conclusion, as we continue to embrace technological progress in our living spaces and workplaces alike, assessing compatibility remains a cornerstone task in ensuring successful modernization efforts. By meticulously evaluating how new controls interact with existing wiring systems-and making informed decisions based on these assessments-we pave the way for smarter environments that are both innovative and reliable.

Installation Process: Connecting a WiFi Thermostat to a Mobile Home HVAC System

Setting Up Remote Access: Configuring Apps and Devices for Control

Integrating new controls with old wiring in mobile homes presents a unique set of challenges that demand careful consideration to ensure both functionality and safety. Mobile homes, often characterized by their compact designs and economical construction, frequently house electrical systems that reflect the standards and technologies of their time. When updating these systems with modern controls, homeowners face the task of bridging the gap between past and present technology, a process fraught with potential complications.


One of the primary issues in this integration is compatibility. Older wiring systems may not be designed to handle the power requirements or communication protocols of newer control devices. For instance, smart home technologies often require more robust electrical infrastructure to support features like wireless connectivity or app-based management. In older mobile homes, the existing wiring might not only be inadequate in terms of capacity but could also pose significant fire hazards if overloaded.


Another challenge lies in the materials used in older wiring systems. Many mobile homes built several decades ago might still employ aluminum wiring instead of copper. Aluminum wires can be prone to oxidation and expansion under load, which can lead to loose connections over time-a condition exacerbated when interfacing with newer controls that might demand tighter tolerances for safe operation.


Furthermore, integrating new controls involves more than just addressing physical and electrical compatibility; it also requires understanding how legacy systems were originally configured. Often, there is limited documentation available for older installations, making it difficult to ascertain how circuits are organized or whether they can accommodate additional loads without modification.


Safety standards have also evolved significantly over the years. What was once considered acceptable practice may no longer meet current codes or regulations aimed at enhancing occupant safety. Therefore, when integrating new controls into an old system, it's crucial for homeowners or professionals to conduct a thorough assessment of the existing setup-identifying any outdated practices such as ungrounded outlets or lack of circuit breakers-and upgrading them accordingly.


Given these complexities, successful integration often demands a delicate balance between respecting the constraints of existing systems while leveraging modern control capabilities to improve efficiency and convenience. The process may necessitate a phased approach: initially upgrading critical components like main panels or specific circuits before fully implementing new technologies across all areas of the home.


In conclusion, while integrating new controls with old wiring in mobile homes poses several challenges related to compatibility and safety standards, it also offers an opportunity for significant improvements in energy efficiency and user experience. By carefully evaluating existing conditions and systematically addressing potential issues through thoughtful upgrades and replacements where necessary, homeowners can successfully bridge technological eras within their living spaces-ensuring both enhanced functionality today and readiness for future innovations tomorrow.

Energy Efficiency and Cost Savings with Remote Access in Mobile Homes

Integrating new controls with existing wiring systems can be a complex endeavor, requiring careful planning and execution to ensure compatibility and functionality. As technology advances, upgrading control systems becomes necessary to enhance efficiency, safety, and performance. However, the process of integrating these controls with pre-existing wiring demands meticulous consideration to avoid potential pitfalls. Here are some essential tips for ensuring successful integration of controls with existing wiring.


Firstly, conducting a thorough assessment of the existing wiring infrastructure is crucial. This involves examining the age, condition, and specifications of the current wiring system. Understanding these aspects helps in determining whether the existing setup can support new controls or if upgrades are necessary. Older systems may not be compatible with modern controls due to outdated materials or insufficient capacity to handle increased loads.


Secondly, compatibility between new controls and existing wiring must be ensured before installation begins. This involves reviewing technical specifications of both the control systems and the existing infrastructure. It is important to check for any differences in voltage requirements, communication protocols, or other technical parameters that might hinder seamless integration. Consulting with manufacturers or experts can provide insights into potential compatibility issues and solutions.


Thirdly, consider implementing an effective labeling system for wires during integration. Proper labeling ensures that each wire's purpose is clearly identified, which facilitates easier troubleshooting and maintenance in the future. It prevents confusion during installation and reduces the risk of erroneous connections that could compromise system functionality.


Moreover, testing is a vital step in ensuring successful integration. Once new controls are connected to the existing wiring system, comprehensive testing should be conducted to verify proper operation under various conditions. This includes checking electrical loads, response times, and communication signals between devices. Testing not only confirms compatibility but also highlights any unforeseen issues that need addressing before full deployment.


In addition to technical considerations, compliance with relevant regulations and standards must not be overlooked during integration processes. Different regions have specific electrical codes that govern installations; adhering to these ensures safety and legality of operations. Professionals involved should be familiar with these regulations to avoid legal complications.


Communication among all stakeholders involved in the project is also key to success. From engineers to installers and facility managers, everyone should be aligned on objectives and aware of their roles within the project timeline. Regular meetings or updates foster collaboration and ensure any challenges encountered are addressed promptly.


Finally, consider investing in training for personnel who will operate or maintain integrated systems post-installation. Familiarity with both legacy wiring systems as well as new control technologies empowers staff members to effectively manage day-to-day operations while quickly resolving minor issues without external assistance.


In conclusion, successful integration of controls with existing wiring requires careful planning across multiple facets-from assessing current infrastructure capabilities through rigorous testing phases-to ensure harmonious operation post-installation while adhering closely alongside regulatory guidelines where applicable alongside maintaining clear lines open communication throughout entire process lifecycle from start finish beyond when needed!

Troubleshooting Common Issues with WiFi Thermostat Integration

In the ever-evolving world of mobile home HVAC systems, ensuring compatibility between controls and existing wiring is a critical component for achieving optimal functionality and energy efficiency. As technology advances, so too does the complexity of these systems, making it imperative to match new controls with pre-existing wiring structures. This ensures not only seamless operation but also prolongs the life of both the HVAC system and the mobile home's electrical infrastructure. To understand this better, let us explore some case studies that exemplify successful compatibility matching in mobile home HVAC systems.


One notable example involves a mobile home community in Florida that sought to upgrade its outdated HVAC units to more modern and efficient models. The challenge was that most homes had varied wiring standards due to different installation dates and modifications over time. The solution was found through a comprehensive assessment of each unit's existing wiring setup. By categorizing homes based on their wiring compatibility, technicians were able to match specific control systems that aligned perfectly with each category's configuration. This tailored approach not only ensured operational success but also enhanced customer satisfaction as residents experienced improved climate control without unnecessary disruptions or rewiring costs.


Another compelling case study comes from a mobile home park in Arizona where extreme temperatures necessitated robust HVAC solutions. Here, the focus was on integrating smart thermostats into older units without overhauling existing wiring frameworks-a common concern given financial constraints among residents. A pilot project was initiated where smart thermostats designed with adaptive compatibility features were tested across several homes with different wiring layouts. These thermostats automatically detected and adjusted to varying power inputs and communication protocols inherent in older wiring setups. The result was a significant reduction in energy consumption and improved user experience as residents could now remotely control their heating and cooling settings efficiently.


Similarly, a rural mobile home community in Texas faced challenges when attempting to comply with new energy-saving regulations which required upgraded HVAC controls compatible with existing systems. In this scenario, rather than adopting a one-size-fits-all approach, an integrative strategy was employed whereby customized control panels were developed for each unique wiring configuration found within the homes. By utilizing modular design principles-where components could be easily swapped or adjusted depending on specific needs-the project achieved compliance while maintaining budgetary constraints.


These examples underscore the importance of strategic planning and adaptability when dealing with compatibility matching in mobile home HVAC systems. They highlight how thorough assessments combined with innovative technological solutions can bridge the gap between old infrastructure and modern requirements effectively.


In conclusion, successful compatibility matching between controls and existing wiring in mobile home HVAC systems is achievable through meticulous evaluation of current setups paired with tailored solutions that respect both technological advancements and financial limitations faced by homeowners. As we continue progressing into an era dominated by smart technologies, these case studies serve as valuable lessons illustrating how innovation can harmonize tradition with modernity for enhanced living experiences within mobile communities worldwide.

A DuPont R-134a refrigerant

A refrigerant is a working fluid used in cooling, heating or reverse cooling and heating of air conditioning systems and heat pumps where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability[1] and the contribution of CFC and HCFC refrigerants to ozone depletion[2] and that of HFC refrigerants to climate change.[3]

Refrigerants are used in a direct expansion (DX- Direct Expansion) system (circulating system)to transfer energy from one environment to another, typically from inside a building to outside (or vice versa) commonly known as an air conditioner cooling only or cooling & heating reverse DX system or heat pump a heating only DX cycle. Refrigerants can carry 10 times more energy per kg than water, and 50 times more than air.

Refrigerants are controlled substances and classified by International safety regulations ISO 817/5149, AHRAE 34/15 & BS EN 378 due to high pressures (700–1,000 kPa (100–150 psi)), extreme temperatures (−50 °C [−58 °F] to over 100 °C [212 °F]), flammability (A1 class non-flammable, A2/A2L class flammable and A3 class extremely flammable/explosive) and toxicity (B1-low, B2-medium & B3-high). The regulations relate to situations when these refrigerants are released into the atmosphere in the event of an accidental leak not while circulated.

Refrigerants (controlled substances) must only be handled by qualified/certified engineers for the relevant classes (in the UK, C&G 2079 for A1-class and C&G 6187-2 for A2/A2L & A3-class refrigerants).

Refrigerants (A1 class only) Due to their non-flammability, A1 class non-flammability, non-explosivity, and non-toxicity, non-explosivity they have been used in open systems (consumed when used) like fire extinguishers, inhalers, computer rooms fire extinguishing and insulation, etc.) since 1928.

History

[edit]
The observed stabilization of HCFC concentrations (left graphs) and the growth of HFCs (right graphs) in earth's atmosphere.

The first air conditioners and refrigerators employed toxic or flammable gases, such as ammonia, sulfur dioxide, methyl chloride, or propane, that could result in fatal accidents when they leaked.[4]

In 1928 Thomas Midgley Jr. created the first non-flammable, non-toxic chlorofluorocarbon gas, Freon (R-12). The name is a trademark name owned by DuPont (now Chemours) for any chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or hydrofluorocarbon (HFC) refrigerant. Following the discovery of better synthesis methods, CFCs such as R-11,[5] R-12,[6] R-123[5] and R-502[7] dominated the market.

Phasing out of CFCs

[edit]

In the mid-1970s, scientists discovered that CFCs were causing major damage to the ozone layer that protects the earth from ultraviolet radiation, and to the ozone holes over polar regions.[8][9] This led to the signing of the Montreal Protocol in 1987 which aimed to phase out CFCs and HCFC[10] but did not address the contributions that HFCs made to climate change. The adoption of HCFCs such as R-22,[11][12][13] and R-123[5] was accelerated and so were used in most U.S. homes in air conditioners and in chillers[14] from the 1980s as they have a dramatically lower Ozone Depletion Potential (ODP) than CFCs, but their ODP was still not zero which led to their eventual phase-out.

Hydrofluorocarbons (HFCs) such as R-134a,[15][16] R-407A,[17] R-407C,[18] R-404A,[7] R-410A[19] (a 50/50 blend of R-125/R-32) and R-507[20][21] were promoted as replacements for CFCs and HCFCs in the 1990s and 2000s. HFCs were not ozone-depleting but did have global warming potentials (GWPs) thousands of times greater than CO2 with atmospheric lifetimes that can extend for decades. This in turn, starting from the 2010s, led to the adoption in new equipment of Hydrocarbon and HFO (hydrofluoroolefin) refrigerants R-32,[22] R-290,[23] R-600a,[23] R-454B,[24] R-1234yf,[25][26] R-514A,[27] R-744 (CO2),[28] R-1234ze(E)[29] and R-1233zd(E),[30] which have both an ODP of zero and a lower GWP. Hydrocarbons and CO2 are sometimes called natural refrigerants because they can be found in nature.

The environmental organization Greenpeace provided funding to a former East German refrigerator company to research alternative ozone- and climate-safe refrigerants in 1992. The company developed a hydrocarbon mixture of propane and isobutane, or pure isobutane,[31] called "Greenfreeze", but as a condition of the contract with Greenpeace could not patent the technology, which led to widespread adoption by other firms.[32][33][34] Policy and political influence by corporate executives resisted change however,[35][36] citing the flammability and explosive properties of the refrigerants,[37] and DuPont together with other companies blocked them in the U.S. with the U.S. EPA.[38][39]

Beginning on 14 November 1994, the U.S. Environmental Protection Agency restricted the sale, possession and use of refrigerants to only licensed technicians, per rules under sections 608 and 609 of the Clean Air Act.[40] In 1995, Germany made CFC refrigerators illegal.[41]

In 1996 Eurammon, a European non-profit initiative for natural refrigerants, was established and comprises European companies, institutions, and industry experts.[42][43][44]

In 1997, FCs and HFCs were included in the Kyoto Protocol to the Framework Convention on Climate Change.

In 2000 in the UK, the Ozone Regulations[45] came into force which banned the use of ozone-depleting HCFC refrigerants such as R22 in new systems. The Regulation banned the use of R22 as a "top-up" fluid for maintenance from 2010 for virgin fluid and from 2015 for recycled fluid.[citation needed]

Addressing greenhouse gases

[edit]

With growing interest in natural refrigerants as alternatives to synthetic refrigerants such as CFCs, HCFCs and HFCs, in 2004, Greenpeace worked with multinational corporations like Coca-Cola and Unilever, and later Pepsico and others, to create a corporate coalition called Refrigerants Naturally!.[41][46] Four years later, Ben & Jerry's of Unilever and General Electric began to take steps to support production and use in the U.S.[47] It is estimated that almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.[48]

In 2006, the EU adopted a Regulation on fluorinated greenhouse gases (FCs and HFCs) to encourage to transition to natural refrigerants (such as hydrocarbons). It was reported in 2010 that some refrigerants are being used as recreational drugs, leading to an extremely dangerous phenomenon known as inhalant abuse.[49]

From 2011 the European Union started to phase out refrigerants with a global warming potential (GWP) of more than 150 in automotive air conditioning (GWP = 100-year warming potential of one kilogram of a gas relative to one kilogram of CO2) such as the refrigerant HFC-134a (known as R-134a in North America) which has a GWP of 1526.[50] In the same year the EPA decided in favour of the ozone- and climate-safe refrigerant for U.S. manufacture.[32][51][52]

A 2018 study by the nonprofit organization "Drawdown" put proper refrigerant management and disposal at the very top of the list of climate impact solutions, with an impact equivalent to eliminating over 17 years of US carbon dioxide emissions.[53]

In 2019 it was estimated that CFCs, HCFCs, and HFCs were responsible for about 10% of direct radiative forcing from all long-lived anthropogenic greenhouse gases.[54] and in the same year the UNEP published new voluntary guidelines,[55] however many countries have not yet ratified the Kigali Amendment.

From early 2020 HFCs (including R-404A, R-134a and R-410A) are being superseded: Residential air-conditioning systems and heat pumps are increasingly using R-32. This still has a GWP of more than 600. Progressive devices use refrigerants with almost no climate impact, namely R-290 (propane), R-600a (isobutane) or R-1234yf (less flammable, in cars). In commercial refrigeration also CO2 (R-744) can be used.

Requirements and desirable properties

[edit]

A refrigerant needs to have: a boiling point that is somewhat below the target temperature (although boiling point can be adjusted by adjusting the pressure appropriately), a high heat of vaporization, a moderate density in liquid form, a relatively high density in gaseous form (which can also be adjusted by setting pressure appropriately), and a high critical temperature. Working pressures should ideally be containable by copper tubing, a commonly available material. Extremely high pressures should be avoided.[citation needed]

The ideal refrigerant would be: non-corrosive, non-toxic, non-flammable, with no ozone depletion and global warming potential. It should preferably be natural with well-studied and low environmental impact. Newer refrigerants address the issue of the damage that CFCs caused to the ozone layer and the contribution that HCFCs make to climate change, but some do raise issues relating to toxicity and/or flammability.[56]

Common refrigerants

[edit]

Refrigerants with very low climate impact

[edit]

With increasing regulations, refrigerants with a very low global warming potential are expected to play a dominant role in the 21st century,[57] in particular, R-290 and R-1234yf. Starting from almost no market share in 2018,[58] low GWPO devices are gaining market share in 2022.

Code Chemical Name GWP 20yr[59] GWP 100yr[59] Status Commentary
R-290 C3H8 Propane   3.3[60] Increasing use Low cost, widely available and efficient. They also have zero ozone depletion potential. Despite their flammability, they are increasingly used in domestic refrigerators and heat pumps. In 2010, about one-third of all household refrigerators and freezers manufactured globally used isobutane or an isobutane/propane blend, and this was expected to increase to 75% by 2020.[61]
R-600a HC(CH3)3 Isobutane   3.3 Widely used See R-290.
R-717 NH3 Ammonia 0 0[62] Widely used Commonly used before the popularisation of CFCs, it is again being considered but does suffer from the disadvantage of toxicity, and it requires corrosion-resistant components, which restricts its domestic and small-scale use. Anhydrous ammonia is widely used in industrial refrigeration applications and hockey rinks because of its high energy efficiency and low cost.
R-1234yf HFO-1234yf C3H2F4 2,3,3,3-Tetrafluoropropene   <1   Less performance but also less flammable than R-290.[57] GM announced that it would start using "hydro-fluoro olefin", HFO-1234yf, in all of its brands by 2013.[63]
R-744 CO2 Carbon dioxide 1 1 In use Was used as a refrigerant prior to the discovery of CFCs (this was also the case for propane)[4] and now having a renaissance due to it being non-ozone depleting, non-toxic and non-flammable. It may become the working fluid of choice to replace current HFCs in cars, supermarkets, and heat pumps. Coca-Cola has fielded CO2-based beverage coolers and the U.S. Army is considering CO2 refrigeration.[64][65] Due to the need to operate at pressures of up to 130 bars (1,900 psi; 13,000 kPa), CO2 systems require highly resistant components, however these have already been developed for mass production in many sectors.

Most used

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Status Commentary
R-32 HFC-32 CH2F2 Difluoromethane 2430 677 Widely used Promoted as climate-friendly substitute for R-134a and R-410A, but still with high climate impact. Has excellent heat transfer and pressure drop performance, both in condensation and vaporisation.[66] It has an atmospheric lifetime of nearly 5 years.[67] Currently used in residential and commercial air-conditioners and heat pumps.
R-134a HFC-134a CH2FCF3 1,1,1,2-Tetrafluoroethane 3790 1550 Widely used Most used in 2020 for hydronic heat pumps in Europe and the United States in spite of high GWP.[58] Commonly used in automotive air conditioners prior to phase out which began in 2012.
R-410A   50% R-32 / 50% R-125 (pentafluoroethane) Between 2430 (R-32) and 6350 (R-125) > 677 Widely Used Most used in split heat pumps / AC by 2018. Almost 100% share in the USA.[58] Being phased out in the US starting in 2022.[68][69]

Banned / Phased out

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Status Commentary
R-11 CFC-11 CCl3F Trichlorofluoromethane 6900 4660 Banned Production was banned in developed countries by Montreal Protocol in 1996
R-12 CFC-12 CCl2F2 Dichlorodifluoromethane 10800 10200 Banned Also known as Freon, a widely used chlorofluorocarbon halomethane (CFC). Production was banned in developed countries by Montreal Protocol in 1996, and in developing countries (article 5 countries) in 2010.[70]
R-22 HCFC-22 CHClF2 Chlorodifluoromethane 5280 1760 Being phased out A widely used hydrochlorofluorocarbon (HCFC) and powerful greenhouse gas with a GWP equal to 1810. Worldwide production of R-22 in 2008 was about 800 Gg per year, up from about 450 Gg per year in 1998. R-438A (MO-99) is a R-22 replacement.[71]
R-123 HCFC-123 CHCl2CF3 2,2-Dichloro-1,1,1-trifluoroethane 292 79 US phase-out Used in large tonnage centrifugal chiller applications. All U.S. production and import of virgin HCFCs will be phased out by 2030, with limited exceptions.[72] R-123 refrigerant was used to retrofit some chiller that used R-11 refrigerant Trichlorofluoromethane. The production of R-11 was banned in developed countries by Montreal Protocol in 1996.[73]

Other

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Commentary
R-152a HFC-152a CH3CHF2 1,1-Difluoroethane 506 138 As a compressed air duster
R-407C   Mixture of difluoromethane and pentafluoroethane and 1,1,1,2-tetrafluoroethane     A mixture of R-32, R-125, and R-134a
R-454B   Difluoromethane and 2,3,3,3-Tetrafluoropropene     HFOs blend of refrigerants Difluoromethane (R-32) and 2,3,3,3-Tetrafluoropropene (R-1234yf).[74][75][76][77]
R-513A   An HFO/HFC blend (56% R-1234yf/44%R-134a)     May replace R-134a as an interim alternative[78]
R-514A   HFO-1336mzz-Z/trans-1,2- dichloroethylene (t-DCE)     An hydrofluoroolefin (HFO)-based refrigerant to replace R-123 in low pressure centrifugal chillers for commercial and industrial applications.[79][80]

Refrigerant reclamation and disposal

[edit]

Coolant and refrigerants are found throughout the industrialized world, in homes, offices, and factories, in devices such as refrigerators, air conditioners, central air conditioning systems (HVAC), freezers, and dehumidifiers. When these units are serviced, there is a risk that refrigerant gas will be vented into the atmosphere either accidentally or intentionally, hence the creation of technician training and certification programs in order to ensure that the material is conserved and managed safely. Mistreatment of these gases has been shown to deplete the ozone layer and is suspected to contribute to global warming.[81]

With the exception of isobutane and propane (R600a, R441A and R290), ammonia and CO2 under Section 608 of the United States' Clean Air Act it is illegal to knowingly release any refrigerants into the atmosphere.[82][83]

Refrigerant reclamation is the act of processing used refrigerant gas which has previously been used in some type of refrigeration loop such that it meets specifications for new refrigerant gas. In the United States, the Clean Air Act of 1990 requires that used refrigerant be processed by a certified reclaimer, which must be licensed by the United States Environmental Protection Agency (EPA), and the material must be recovered and delivered to the reclaimer by EPA-certified technicians.[84]

Classification of refrigerants

[edit]
R407C pressure-enthalpy diagram, isotherms between the two saturation lines

Refrigerants may be divided into three classes according to their manner of absorption or extraction of heat from the substances to be refrigerated:[citation needed]

  • Class 1: This class includes refrigerants that cool by phase change (typically boiling), using the refrigerant's latent heat.
  • Class 2: These refrigerants cool by temperature change or 'sensible heat', the quantity of heat being the specific heat capacity x the temperature change. They are air, calcium chloride brine, sodium chloride brine, alcohol, and similar nonfreezing solutions. The purpose of Class 2 refrigerants is to receive a reduction of temperature from Class 1 refrigerants and convey this lower temperature to the area to be cooled.
  • Class 3: This group consists of solutions that contain absorbed vapors of liquefiable agents or refrigerating media. These solutions function by nature of their ability to carry liquefiable vapors, which produce a cooling effect by the absorption of their heat of solution. They can also be classified into many categories.

R numbering system

[edit]

The R- numbering system was developed by DuPont (which owned the Freon trademark), and systematically identifies the molecular structure of refrigerants made with a single halogenated hydrocarbon. ASHRAE has since set guidelines for the numbering system as follows:[85]

R-X1X2X3X4

  • X1 = Number of unsaturated carbon-carbon bonds (omit if zero)
  • X2 = Number of carbon atoms minus 1 (omit if zero)
  • X3 = Number of hydrogen atoms plus 1
  • X4 = Number of fluorine atoms

Series

[edit]
  • R-xx Methane Series
  • R-1xx Ethane Series
  • R-2xx Propane Series
  • R-4xx Zeotropic blend
  • R-5xx Azeotropic blend
  • R-6xx Saturated hydrocarbons (except for propane which is R-290)
  • R-7xx Inorganic Compounds with a molar mass < 100
  • R-7xxx Inorganic Compounds with a molar mass ≥ 100

Ethane Derived Chains

[edit]
  • Number Only Most symmetrical isomer
  • Lower Case Suffix (a, b, c, etc.) indicates increasingly unsymmetrical isomers

Propane Derived Chains

[edit]
  • Number Only If only one isomer exists; otherwise:
  • First lower case suffix (a-f):
    • a Suffix Cl2 central carbon substitution
    • b Suffix Cl, F central carbon substitution
    • c Suffix F2 central carbon substitution
    • d Suffix Cl, H central carbon substitution
    • e Suffix F, H central carbon substitution
    • f Suffix H2 central carbon substitution
  • 2nd Lower Case Suffix (a, b, c, etc.) Indicates increasingly unsymmetrical isomers

Propene derivatives

[edit]
  • First lower case suffix (x, y, z):
    • x Suffix Cl substitution on central atom
    • y Suffix F substitution on central atom
    • z Suffix H substitution on central atom
  • Second lower case suffix (a-f):
    • a Suffix =CCl2 methylene substitution
    • b Suffix =CClF methylene substitution
    • c Suffix =CF2 methylene substitution
    • d Suffix =CHCl methylene substitution
    • e Suffix =CHF methylene substitution
    • f Suffix =CH2 methylene substitution

Blends

[edit]
  • Upper Case Suffix (A, B, C, etc.) Same blend with different compositions of refrigerants

Miscellaneous

[edit]
  • R-Cxxx Cyclic compound
  • R-Exxx Ether group is present
  • R-CExxx Cyclic compound with an ether group
  • R-4xx/5xx + Upper Case Suffix (A, B, C, etc.) Same blend with different composition of refrigerants
  • R-6xx + Lower Case Letter Indicates increasingly unsymmetrical isomers
  • 7xx/7xxx + Upper Case Letter Same molar mass, different compound
  • R-xxxxB# Bromine is present with the number after B indicating how many bromine atoms
  • R-xxxxI# Iodine is present with the number after I indicating how many iodine atoms
  • R-xxx(E) Trans Molecule
  • R-xxx(Z) Cis Molecule

For example, R-134a has 2 carbon atoms, 2 hydrogen atoms, and 4 fluorine atoms, an empirical formula of tetrafluoroethane. The "a" suffix indicates that the isomer is unbalanced by one atom, giving 1,1,1,2-Tetrafluoroethane. R-134 (without the "a" suffix) would have a molecular structure of 1,1,2,2-Tetrafluoroethane.

The same numbers are used with an R- prefix for generic refrigerants, with a "Propellant" prefix (e.g., "Propellant 12") for the same chemical used as a propellant for an aerosol spray, and with trade names for the compounds, such as "Freon 12". Recently, a practice of using abbreviations HFC- for hydrofluorocarbons, CFC- for chlorofluorocarbons, and HCFC- for hydrochlorofluorocarbons has arisen, because of the regulatory differences among these groups.[citation needed]

Refrigerant safety

[edit]

ASHRAE Standard 34, Designation and Safety Classification of Refrigerants, assigns safety classifications to refrigerants based upon toxicity and flammability.

Using safety information provided by producers, ASHRAE assigns a capital letter to indicate toxicity and a number to indicate flammability. The letter "A" is the least toxic and the number 1 is the least flammable.[86]

See also

[edit]
  • Brine (Refrigerant)
  • Section 608
  • List of Refrigerants

References

[edit]
  1. ^ United Nations Environment Programme (UNEP). "Update on New Refrigerants Designations and Safety Classifications" (PDF). ASHRAE. Retrieved 6 October 2024.
  2. ^ "Phaseout of Class II Ozone-Depleting Substances". US Environmental Protection Agency. 22 July 2015. Retrieved October 6, 2024.
  3. ^ "Protecting Our Climate by Reducing Use of HFCs". United States Environmental Protection Agency. 8 February 2021. Retrieved 6 October 2024.
  4. ^ a b Pearson, S. Forbes. "Refrigerants Past, Present and Future" (PDF). R744. Archived from the original (PDF) on 2018-07-13. Retrieved 2021-03-30.
  5. ^ a b c "Finally, a replacement for R123?". Cooling Post. 17 October 2013.
  6. ^ https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/download/3297/1244/
  7. ^ a b Tomczyk, John (1 May 2017). "What's the Latest with R-404A?". achrnews.com.
  8. ^ Molina, Mario J.; Rowland, F. S (28 June 1974). "Stratospheric sink for chlorofluoromethanes: chlorine catalysed destruction of ozone" (PDF). Nature. 249: 810–812. doi:10.1038/249810a0. Retrieved October 6, 2024.
  9. ^ National Research Council (1976). Halocarbons: Effects on Stratospheric Ozone. Washington, DC: The National Academies Press. doi:10.17226/19978. ISBN 978-0-309-02532-4. Retrieved October 6, 2024.
  10. ^ "Air Conditioners, Dehumidifiers, and R-410A Refrigerant". Sylvane. 1 July 2011. Retrieved 27 July 2023.
  11. ^ Protection, United States Congress Senate Committee on Environment and Public Works Subcommittee on Environmental (May 14, 1987). "Clean Air Act Amendments of 1987: Hearings Before the Subcommittee on Environmental Protection of the Committee on Environment and Public Works, United States Senate, One Hundredth Congress, First Session, on S. 300, S. 321, S. 1351, and S. 1384 ..." U.S. Government Printing Office – via Google Books.
  12. ^ Fluorinated Hydrocarbons—Advances in Research and Application (2013 ed.). ScholarlyEditions. June 21, 2013. p. 179. ISBN 9781481675703 – via Google Books.
  13. ^ Whitman, Bill; Johnson, Bill; Tomczyk, John; Silberstein, Eugene (February 25, 2008). Refrigeration and Air Conditioning Technology. Cengage Learning. p. 171. ISBN 978-1111803223 – via Google Books.
  14. ^ "Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C" (PDF). Archived from the original (PDF) on 2021-07-20. Retrieved 2021-03-29.
  15. ^ "What's Happening With R-134a? | 2017-06-05 | ACHRNEWS | ACHR News". achrnews.com.
  16. ^ "Conversion R12/R134a" (PDF). Behr Hella Service GmbH. 1 October 2005. Retrieved 27 July 2023.
  17. ^ "R-407A Gains SNAP OK". achrnews.com (Press release). 22 June 2009.
  18. ^ "June 26, 2009: Emerson Approves R-407A, R-407C for Copeland Discus Compressors". achrnews.com.
  19. ^ "Taking New Refrigerants to the Peak". achrnews.com.
  20. ^ Koenig, H. (31 December 1995). "R502/R22 - replacement refrigerant R507 in commercial refrigeration; R502/R22 - Ersatzkaeltemittel R507 in der Gewerbekuehlung. Anwendungstechnik - Kaeltemittel".
  21. ^ Linton, J. W.; Snelson, W. K.; Triebe, A. R.; Hearty, P. F. (31 December 1995). "System performance comparison of R-507 with R-502". OSTI 211821.
  22. ^ "Daikin reveals details of R32 VRV air conditioner". Cooling Post. 6 February 2020.
  23. ^ a b "Refrigerant blends to challenge hydrocarbon efficiencies". Cooling Post. 22 December 2019.
  24. ^ "An HVAC Technician's Guide to R-454B". achrnews.com.
  25. ^ "The truth about new automotive A/C refrigerant R1234YF". 25 July 2018.
  26. ^ Kontomaris, Konstantinos (2014). "HFO-1336mzz-Z: High Temperature Chemical Stability and Use as A Working Fluid in Organic Rankine Cycles". International Refrigeration and Air Conditioning Conference. Paper 1525
  27. ^ "Trane adopts new low GWP refrigerant R514A". Cooling Post. 15 June 2016.
  28. ^ "R404A – the alternatives". Cooling Post. 26 February 2014.
  29. ^ "Carrier expands R1234ze chiller range". Cooling Post. 20 May 2020.
  30. ^ "Carrier confirms an HFO refrigerant future". Cooling Post. 5 June 2019.
  31. ^ "Greenfreeze: A revolution in domestic refrigeration". ecomall.com. Retrieved 2022-07-04.
  32. ^ a b "Happy birthday, Greenfreeze!". Greenpeace. 25 March 2013. Archived from the original on 2020-04-08. Retrieved 8 June 2015.
  33. ^ "Ozone Secretariat". United Nations Environment Programme. Archived from the original on 12 April 2015.
  34. ^ Gunkel, Christoph (13 September 2013). "Öko-Coup aus Ostdeutschland". Der Spiegel (in German). Retrieved 4 September 2015.
  35. ^ Maté, John (2001). "Making a Difference: A Case Study of the Greenpeace Ozone Campaign". Review of European Community & International Environmental Law. 10 (2): 190–198. doi:10.1111/1467-9388.00275.
  36. ^ Benedick, Richard Elliot Ozone Diplomacy Cambridge, MA: Harvard University 1991.
  37. ^ Honeywell International, Inc. (2010-07-09). "Comment on EPA Proposed Rule Office of Air and Radiation Proposed Significant New Alternatives Policy (SNAP) Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances – Hydrocarbon Refrigerants" (PDF).
  38. ^ "Discurso de Frank Guggenheim no lançamento do Greenfreeze | Brasil". Greenpeace.org. Archived from the original on 24 September 2015. Retrieved 10 June 2015.
  39. ^ "Der Greenfreeze - endlich in den USA angekommen". Greenpeace.de (in German). 28 December 2011. Retrieved 10 June 2015.
  40. ^ "Complying With The Section 608 Refrigerant Recycling Rule | Ozone Layer Protection - Regulatory Programs". Epa.gov. 21 April 2015. Retrieved 10 June 2015.
  41. ^ a b "Greenfreeze: a Revolution in Domestic Refrigeration". ecomall.com. Retrieved 8 June 2015.
  42. ^ "Company background". Archived from the original on 2020-02-20. Retrieved 2021-03-15.
  43. ^ Safeguarding the ozone layer and the global climate System: issues related to Hydrofluorocarbons and Perfluorocarbons (Report). IPCC/TEAP. 2005.
  44. ^ Crowley, Thomas J. (2000). "Causes of Climate Change over the Past 1000 Years". Science. 289 (5477): 270–277. Bibcode:2000Sci...289..270C. doi:10.1126/science.289.5477.270. PMID 10894770.
  45. ^ "2010 to 2015 government policy: environmental quality". GOV.UK. 8 May 2015. Retrieved 10 June 2015.
  46. ^ "PepsiCo Brings First Climate-Friendly Vending Machines to the U.S." phx.corporate-ir.net. Retrieved 8 June 2015.
  47. ^ "Climate-Friendly Greenfreezers Come to the United States". WNBC. 2 October 2008. Retrieved 8 June 2015.
  48. ^ Data, Reports and (7 August 2020). "Natural Refrigerants Market To Reach USD 2.88 Billion By 2027 | Reports and Data". GlobeNewswire News Room (Press release). Retrieved 17 December 2020.
  49. ^ Harris, Catharine. "Anti-inhalant Abuse Campaign Targets Building Codes: 'Huffing’ of Air Conditioning Refrigerant a Dangerous Risk." The Nation's Health. American Public Health Association, 2010. Web. 5 December 2010. https://www.thenationshealth.org/content/39/4/20
  50. ^ IPCC AR6 WG1 Ch7 2021
  51. ^ "GreenFreeze". Greenpeace.
  52. ^ "Significant New Alternatives Program: Substitutes in Household Refrigerators and Freezers". Epa.gov. 13 November 2014. Retrieved 4 June 2018.
  53. ^ Berwald, Juli (29 April 2019). "One overlooked way to fight climate change? Dispose of old CFCs". National Geographic - Environment. Archived from the original on April 29, 2019. Retrieved 30 April 2019.
  54. ^ Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  55. ^ Environment, U. N. (31 October 2019). "New guidelines for air conditioners and refrigerators set to tackle climate change". UN Environment. Retrieved 30 March 2020.
  56. ^ Rosenthal, Elisabeth; Lehren, Andrew (20 June 2011). "Relief in Every Window, but Global Worry Too". The New York Times. Retrieved 21 June 2012.
  57. ^ a b Yadav et al 2022
  58. ^ a b c BSRIA 2020
  59. ^ a b c d e f g h IPCC AR5 WG1 Ch8 2013, pp. 714, 731–737
  60. ^ "European Commission on retrofit refrigerants for stationary applications" (PDF). Archived from the original on August 5, 2009. Retrieved 2010-10-29.cite web: CS1 maint: unfit URL (link)
  61. ^ "Protection of Stratospheric Ozone: Hydrocarbon Refrigerants" (PDF). Environment Protection Agency. Retrieved 5 August 2018.
  62. ^ ARB 2022
  63. ^ GM to Introduce HFO-1234yf AC Refrigerant in 2013 US Models
  64. ^ "The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming". The Coca-Cola Company. 5 June 2006. Archived from the original on 1 November 2013. Retrieved 11 October 2007.
  65. ^ "Modine reinforces its CO2 research efforts". R744.com. 28 June 2007. Archived from the original on 10 February 2008.
  66. ^ Longo, Giovanni A.; Mancin, Simone; Righetti, Giulia; Zilio, Claudio (2015). "HFC32 vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Experimental measurements and IR thermography analysis". International Journal of Refrigeration. 57: 77–86. doi:10.1016/j.ijrefrig.2015.04.017.
  67. ^ May 2010 TEAP XXI/9 Task Force Report
  68. ^ "Protecting Our Climate by Reducing Use of HFCs". US Environmental Protection Agency. 8 February 2021. Retrieved 25 August 2022.
  69. ^ "Background on HFCs and the AIM Act". www.usepa.gov. US EPA. March 2021. Retrieved 27 June 2024.
  70. ^ "1:Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol". Scientific assessment of ozone depletion: 2018 (PDF) (Global Ozone Research and Monitoring Project–Report No. 58 ed.). Geneva, Switzerland: World Meteorological Organization. 2018. p. 1.10. ISBN 978-1-7329317-1-8. Retrieved 22 November 2020.
  71. ^ [1] Chemours M099 as R22 Replacement
  72. ^ [2] Management of HCFC-123 through the Phaseout and Beyond | EPA | Published August 2020 | Retrieved Dec. 18, 2021
  73. ^ [3] Refrigerant R11 (R-11), Freon 11 (Freon R-11) Properties & Replacement
  74. ^ [4] R-454B XL41 refrigerant fact & info sheet
  75. ^ [5] R-454B emerges as a replacement for R-410A | ACHR News (Air Conditioning, Heating, Refrigeration News)
  76. ^ [6] Ccarrier introduces [R-454B] Puron Advance™ as the next generation refrigerant for ducted residential, light commercial products in North America | Indianapolis - 19 December 2018
  77. ^ [7] Johnson Controls selects R-454B as future refrigerant for new HVAC equipment | 27 May 2021
  78. ^ [8] A conversation on refrigerants | ASHRAE Journal, March 2021 | page 30, column 1, paragraph 2
  79. ^ [9] Opteon™ XP30 (R-514A) refrigerant
  80. ^ [10] Trane adopts new low GWP refrigerant R514A | 15 June 2016
  81. ^ "Emissions of Greenhouse Gases in the United States 1998 - Executive Summary". 18 August 2000. Archived from the original on 18 August 2000.
  82. ^ "Frequently Asked Questions on Section 608". Environment Protection Agency. Retrieved 20 December 2013.
  83. ^ "US hydrocarbons". Retrieved 5 August 2018.
  84. ^ "42 U.S. Code § 7671g - National recycling and emission reduction program". LII / Legal Information Institute.
  85. ^ ASHRAE; UNEP (Nov 2022). "Designation and Safety Classification of Refrigerants" (PDF). ASHRAE. Retrieved 1 July 2023.
  86. ^ "Update on New Refrigerants Designations and Safety Classifications" (PDF). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). April 2020. Archived from the original (PDF) on February 13, 2023. Retrieved October 22, 2022.
 

Sources

[edit]

IPCC reports

[edit]
  • IPCC (2013). Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; et al. (eds.). Climate Change 2013: The Physical Science Basis (PDF). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. ISBN 978-1-107-05799-9. (pb: 978-1-107-66182-0). Fifth Assessment Report - Climate Change 2013
    • Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; et al. (2013). "Chapter 8: Anthropogenic and Natural Radiative Forcing" (PDF). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 659–740.
  • IPCC (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al. (eds.). Climate Change 2021: The Physical Science Basis (PDF). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press).
  • Forster, Piers; Storelvmo, Trude (2021). "Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity" (PDF). IPCC AR6 WG1 2021.

Other

[edit]
  • "High GWP refrigerants". California Air Resources Board. Retrieved 13 February 2022.
  • "BSRIA's view on refrigerant trends in AC and Heat Pump segments". 2020. Retrieved 2022-02-14.
  • Yadav, Saurabh; Liu, Jie; Kim, Sung Chul (2022). "A comprehensive study on 21st-century refrigerants - R290 and R1234yf: A review". International Journal of Heat and Mass Transfer. 122: 121947. Bibcode:2022IJHMT.18221947Y. doi:10.1016/j.ijheatmasstransfer.2021.121947. S2CID 240534198.
[edit]
  • US Environmental Protection Agency page on the GWPs of various substances
  • Green Cooling Initiative on alternative natural refrigerants cooling technologies
  • International Institute of Refrigeration Archived 2018-09-25 at the Wayback Machine

 

Prefabrication is the practice of assembling components of a structure in a factory or other manufacturing site, and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be located. Some researchers refer it to “various materials joined together to form a component of the final installation procedure“.

The most commonly cited definition is by Goodier and Gibb in 2007, which described the process of manufacturing and preassembly of a certain number of building components, modules, and elements before their shipment and installation on construction sites.[1]

The term prefabrication also applies to the manufacturing of things other than structures at a fixed site. It is frequently used when fabrication of a section of a machine or any movable structure is shifted from the main manufacturing site to another location, and the section is supplied assembled and ready to fit. It is not generally used to refer to electrical or electronic components of a machine, or mechanical parts such as pumps, gearboxes and compressors which are usually supplied as separate items, but to sections of the body of the machine which in the past were fabricated with the whole machine. Prefabricated parts of the body of the machine may be called 'sub-assemblies' to distinguish them from the other components.

Process and theory

[edit]
Levittown, Puerto Rico

An example from house-building illustrates the process of prefabrication. The conventional method of building a house is to transport bricks, timber, cement, sand, steel and construction aggregate, etc. to the site, and to construct the house on site from these materials. In prefabricated construction, only the foundations are constructed in this way, while sections of walls, floors and roof are prefabricated (assembled) in a factory (possibly with window and door frames included), transported to the site, lifted into place by a crane and bolted together.

Prefabrication is used in the manufacture of ships, aircraft and all kinds of vehicles and machines where sections previously assembled at the final point of manufacture are assembled elsewhere instead, before being delivered for final assembly.

The theory behind the method is that time and cost is saved if similar construction tasks can be grouped, and assembly line techniques can be employed in prefabrication at a location where skilled labour is available, while congestion at the assembly site, which wastes time, can be reduced. The method finds application particularly where the structure is composed of repeating units or forms, or where multiple copies of the same basic structure are being constructed. Prefabrication avoids the need to transport so many skilled workers to the construction site, and other restricting conditions such as a lack of power, lack of water, exposure to harsh weather or a hazardous environment are avoided. Against these advantages must be weighed the cost of transporting prefabricated sections and lifting them into position as they will usually be larger, more fragile and more difficult to handle than the materials and components of which they are made.

History

[edit]
"Loren" Iron House, at Old Gippstown in Moe, Australia

Prefabrication has been used since ancient times. For example, it is claimed that the world's oldest known engineered roadway, the Sweet Track constructed in England around 3800 BC, employed prefabricated timber sections brought to the site rather than assembled on-site.[citation needed]

Sinhalese kings of ancient Sri Lanka have used prefabricated buildings technology to erect giant structures, which dates back as far as 2000 years, where some sections were prepared separately and then fitted together, specially in the Kingdom of Anuradhapura and Polonnaruwa.

After the great Lisbon earthquake of 1755, the Portuguese capital, especially the Baixa district, was rebuilt by using prefabrication on an unprecedented scale. Under the guidance of Sebastião José de Carvalho e Melo, popularly known as the Marquis de Pombal, the most powerful royal minister of D. Jose I, a new Pombaline style of architecture and urban planning arose, which introduced early anti-seismic design features and innovative prefabricated construction methods, according to which large multistory buildings were entirely manufactured outside the city, transported in pieces and then assembled on site. The process, which lasted into the nineteenth century, lodged the city's residents in safe new structures unheard-of before the quake.

Also in Portugal, the town of Vila Real de Santo António in the Algarve, founded on 30 December 1773, was quickly erected through the use of prefabricated materials en masse. The first of the prefabricated stones was laid in March 1774. By 13 May 1776, the centre of the town had been finished and was officially opened.

In 19th century Australia a large number of prefabricated houses were imported from the United Kingdom.

The method was widely used in the construction of prefabricated housing in the 20th century, such as in the United Kingdom as temporary housing for thousands of urban families "bombed out" during World War II. Assembling sections in factories saved time on-site and the lightness of the panels reduced the cost of foundations and assembly on site. Coloured concrete grey and with flat roofs, prefab houses were uninsulated and cold and life in a prefab acquired a certain stigma, but some London prefabs were occupied for much longer than the projected 10 years.[2]

The Crystal Palace, erected in London in 1851, was a highly visible example of iron and glass prefabricated construction; it was followed on a smaller scale by Oxford Rewley Road railway station.

During World War II, prefabricated Cargo ships, designed to quickly replace ships sunk by Nazi U-boats became increasingly common. The most ubiquitous of these ships was the American Liberty ship, which reached production of over 2,000 units, averaging 3 per day.

Current uses

[edit]
A house being built with prefabricated concrete panels.

The most widely used form of prefabrication in building and civil engineering is the use of prefabricated concrete and prefabricated steel sections in structures where a particular part or form is repeated many times. It can be difficult to construct the formwork required to mould concrete components on site, and delivering wet concrete to the site before it starts to set requires precise time management. Pouring concrete sections in a factory brings the advantages of being able to re-use moulds and the concrete can be mixed on the spot without having to be transported to and pumped wet on a congested construction site. Prefabricating steel sections reduces on-site cutting and welding costs as well as the associated hazards.

Prefabrication techniques are used in the construction of apartment blocks, and housing developments with repeated housing units. Prefabrication is an essential part of the industrialization of construction.[3] The quality of prefabricated housing units had increased to the point that they may not be distinguishable from traditionally built units to those that live in them. The technique is also used in office blocks, warehouses and factory buildings. Prefabricated steel and glass sections are widely used for the exterior of large buildings.

Detached houses, cottages, log cabin, saunas, etc. are also sold with prefabricated elements. Prefabrication of modular wall elements allows building of complex thermal insulation, window frame components, etc. on an assembly line, which tends to improve quality over on-site construction of each individual wall or frame. Wood construction in particular benefits from the improved quality. However, tradition often favors building by hand in many countries, and the image of prefab as a "cheap" method only slows its adoption. However, current practice already allows the modifying the floor plan according to the customer's requirements and selecting the surfacing material, e.g. a personalized brick facade can be masoned even if the load-supporting elements are timber.

Today, prefabrication is used in various industries and construction sectors such as healthcare, retail, hospitality, education, and public administration, due to its many advantages and benefits over traditional on-site construction, such as reduced installation time and cost savings.[4] Being used in single-story buildings as well as in multi-story projects and constructions. Providing the possibility of applying it to a specific part of the project or to the whole of it.

The efficiency and speed in the execution times of these works offer that, for example, in the case of the educational sector, it is possible to execute the projects without the cessation of the operations of the educational facilities during the development of the same.

Transportation of prefabricated Airbus wing assembly

Prefabrication saves engineering time on the construction site in civil engineering projects. This can be vital to the success of projects such as bridges and avalanche galleries, where weather conditions may only allow brief periods of construction. Prefabricated bridge elements and systems offer bridge designers and contractors significant advantages in terms of construction time, safety, environmental impact, constructibility, and cost. Prefabrication can also help minimize the impact on traffic from bridge building. Additionally, small, commonly used structures such as concrete pylons are in most cases prefabricated.

Radio towers for mobile phone and other services often consist of multiple prefabricated sections. Modern lattice towers and guyed masts are also commonly assembled of prefabricated elements.

Prefabrication has become widely used in the assembly of aircraft and spacecraft, with components such as wings and fuselage sections often being manufactured in different countries or states from the final assembly site. However, this is sometimes for political rather than commercial reasons, such as for Airbus.

Advantages

[edit]
  • Moving partial assemblies from a factory often costs less than moving pre-production resources to each site
  • Deploying resources on-site can add costs; prefabricating assemblies can save costs by reducing on-site work
  • Factory tools - jigs, cranes, conveyors, etc. - can make production faster and more precise
  • Factory tools - shake tables, hydraulic testers, etc. - can offer added quality assurance
  • Consistent indoor environments of factories eliminate most impacts of weather on production
  • Cranes and reusable factory supports can allow shapes and sequences without expensive on-site falsework
  • Higher-precision factory tools can aid more controlled movement of building heat and air, for lower energy consumption and healthier buildings
  • Factory production can facilitate more optimal materials usage, recycling, noise capture, dust capture, etc.
  • Machine-mediated parts movement, and freedom from wind and rain can improve construction safety
  • Homogeneous manufacturing allows high standardization and quality control, ensuring quality requirements subject to performance and resistance tests, which also facilitate high scalability of construction projects. [5]
  • The specific production processes in industrial assembly lines allow high sustainability, which enables savings of up to 20% of the total final cost, as well as considerable savings in indirect costs. [6]

Disadvantages

[edit]
  • Transportation costs may be higher for voluminous prefabricated sections (especially sections so big that they constitute oversize loads requiring special signage, escort vehicles, and temporary road closures) than for their constituent materials, which can often be packed more densely and are more likely to fit onto standard-sized vehicles.
  • Large prefabricated sections may require heavy-duty cranes and precision measurement and handling to place in position.

Off-site fabrication

[edit]

Off-site fabrication is a process that incorporates prefabrication and pre-assembly. The process involves the design and manufacture of units or modules, usually remote from the work site, and the installation at the site to form the permanent works at the site. In its fullest sense, off-site fabrication requires a project strategy that will change the orientation of the project process from construction to manufacture to installation. Examples of off-site fabrication are wall panels for homes, wooden truss bridge spans, airport control stations.

There are four main categories of off-site fabrication, which is often also referred to as off-site construction. These can be described as component (or sub-assembly) systems, panelised systems, volumetric systems, and modular systems. Below these categories different branches, or technologies are being developed. There are a vast number of different systems on the market which fall into these categories and with recent advances in digital design such as building information modeling (BIM), the task of integrating these different systems into a construction project is becoming increasingly a "digital" management proposition.

The prefabricated construction market is booming. It is growing at an accelerated pace both in more established markets such as North America and Europe and in emerging economies such as the Asia-Pacific region (mainly China and India). Considerable growth is expected in the coming years, with the prefabricated modular construction market expected to grow at a CAGR (compound annual growth rate) of 8% between 2022 and 2030. It is expected to reach USD 271 billion by 2030. [7]

See also

[edit]
  • Prefabricated home
  • Prefabricated buildings
  • Concrete perpend
  • Panelák
  • Tower block
  • St Crispin's School — an example of a prefabricated school building
  • Nonsuch House, first prefabricated building
  • Agile construction
  • Intermediate good

References

[edit]
  1. ^ (2022) Modularity clustering of economic development and ESG attributes in prefabricated building research. Frontiers in Environmental Science, 10. Retrieved from https://www.frontiersin.org/articles/10.3389/fenvs.2022.977887
  2. ^ Sargeant, Tony Anthony J. (11 November 2016) [2016-09-10]. "'Prefabs' in South London – built as emergency housing just after WW2 and meant to last for just 10 years". Tonyjsargeant.wordpress.com. Archived from the original on 14 October 2016. Retrieved 19 July 2018.
  3. ^ Goh, Edward; Loosemore, Martin (4 May 2017). "The impacts of industrialization on construction subcontractors: a resource based view". Construction Management and Economics. 35 (5): 288–304. doi:10.1080/01446193.2016.1253856. ISSN 0144-6193.
  4. ^ Details about the modular construction market. Hydrodiseno.com. 2022-08-17. Retrieved 2023-01-05
  5. ^ Zhou, Jingyang; Li, Yonghan; Ren, Dandan (November 2022). "Quantitative study on external benefits of prefabricated buildings: From perspectives of economy, environment, and society". Sustainable Cities and Society. 86. Bibcode:2022SusCS..8604132Z. doi:10.1016/j.scs.2022.104132.
  6. ^ Why Choose Modular Construction? Hydrodiseno.com. 2021-07-29. Retrieved 2023-03-07
  7. ^ Modular Construction Market Size is projected to reach USD 271 Billion by 2030, growing at a CAGR of 8%: Straits Research. Globenewswire.com. 2022-06-18. Retrieved 2023-02-16

Sources

[edit]

 

"Prefabricated Building Construction Systems Adopted in Hong Kong" (PDF). Retrieved 20 August 2013.

 

Driving Directions in Arapahoe County


Driving Directions From Arapahoe County Assessor to Royal Supply South
Driving Directions From The Home Depot to Royal Supply South
Driving Directions From Costco Wholesale to Royal Supply South
Driving Directions From Tandy Leather South Denver - 151 to Royal Supply South
Driving Directions From Littleton to Royal Supply South
Driving Directions From King Soopers Pharmacy to Royal Supply South
Driving Directions From History Colorado Center to Royal Supply South
Driving Directions From Morrison Nature Center to Royal Supply South
Driving Directions From Wings Over the Rockies Air & Space Museum to Royal Supply South
Driving Directions From Cherry Creek Valley Ecological Park to Royal Supply South
Driving Directions From Wings Over the Rockies Air & Space Museum to Royal Supply South
Driving Directions From Wings Over the Rockies Air & Space Museum to Royal Supply South

Reviews for Royal Supply South


View GBP

Frequently Asked Questions

Key factors include ensuring voltage compatibility, checking for adequate wiring gauge and condition, verifying control signal compatibility (such as analog or digital), and confirming that the new controls support any specific features used by the current system.
Check for a common wire (C-wire) which provides continuous power. If absent, you might need an adapter or additional wiring. Also, ensure your HVAC system supports smart thermostats voltage requirements.
Mobile homes often have different electrical layouts and may use smaller gauge wires. Its crucial to verify that the wiring can handle the load of new controls without overheating or causing other issues.
Yes, incorrect voltage levels, inadequate wire gauges, or missing necessary connections like a C-wire can lead to malfunctioning controls or even damage to the HVAC system.
Conduct an assessment of the current wirings condition and capacity, consult installation manuals for compatibility requirements, possibly upgrade any outdated components, and consider professional inspection if unsure about safety standards.