Implementing Airflow Balancing Techniques

Implementing Airflow Balancing Techniques

Overview of Mobile Home HVAC Systems and Compatibility Considerations

The importance of proper airflow in maintaining efficiency and comfort within a building cannot be overstated. Whether it's a residential home or a sprawling commercial complex, achieving an optimal balance of airflow is crucial for both energy efficiency and the well-being of its occupants. Implementing airflow balancing techniques plays an essential role in ensuring that heating, ventilation, and air conditioning (HVAC) systems function as intended, delivering conditioned air evenly and effectively throughout the space.


Refrigerant levels should be checked regularly in mobile home systems best hvac system for mobile home ultraviolet radiation.

Airflow balancing is a systematic process that involves adjusting the distribution of air within HVAC systems to ensure each room receives the correct amount for its needs. This is not just about comfort; it directly impacts energy consumption. When airflow is imbalanced, certain areas may receive too much or too little conditioned air, causing some parts of the building to be overcooled or overheated. Consequently, this leads to unnecessary energy use as systems work harder to compensate for these disparities, ultimately driving up utility costs.


Beyond efficiency, proper airflow significantly enhances indoor comfort levels. Imagine sitting in an office where one side feels like an icebox while another resembles a sauna; such discrepancies are often due to poor airflow distribution. By employing balancing techniques, such issues can be resolved by ensuring that each zone maintains consistent temperatures aligned with occupant preferences and activities conducted there.


Effective implementation of airflow balancing typically requires professional assessment and adjustment by HVAC specialists who can analyze system performance using specialized tools and techniques. This might include measuring static pressure differentials across various ducts or utilizing flow hoods to gauge output at vents. Once data has been collected, technicians make necessary adjustments-such as modifying dampers or resizing ductwork-to achieve desired outcomes.


Moreover, regularly revisiting these adjustments is vital as usage patterns change over time due to factors like seasonal variations or modifications in building layout and occupancy levels. Scheduled maintenance checks help sustain balanced conditions year-round while preemptively identifying potential inefficiencies before they escalate into larger problems.


In summary, investing in proper airflow balancing techniques is more than a measure for enhancing HVAC performance; it's a commitment to sustainable energy use and improved quality of life within built environments. By ensuring efficient operation through precise control over how air moves throughout spaces we inhabit daily-be it homes offices schools hospitals-we not only conserve resources but also create atmospheres conducive towards productivity health happiness alike making every breath taken indoors feel just right!

In the realm of mobile homes, ensuring efficient and effective HVAC airflow can often present a collection of unique challenges. These challenges are primarily due to the compact and sometimes unconventional spaces in which mobile home HVAC systems operate. Implementing airflow balancing techniques is crucial for optimizing comfort, energy efficiency, and system longevity.


One of the most common challenges in mobile home HVAC systems is the uneven distribution of air. This often results from inadequate ductwork design or installation. Mobile homes typically have smaller, more constrained spaces that limit the placement and size of ducts. As a result, certain areas may receive too much airflow while others receive too little, leading to hot or cold spots within the living space. To address this issue, homeowners can employ airflow balancing techniques that ensure each area receives an adequate amount of conditioned air.


Firstly, assessing and adjusting dampers is a fundamental step in achieving balanced airflow. Dampers are valves or plates that regulate air flow inside a duct system. By strategically opening or closing these dampers, one can control the volume of air reaching different parts of the home. This adjustment helps distribute air evenly across all rooms, preventing discomfort associated with temperature imbalances.


Another technique involves resizing or rerouting ductwork to better accommodate the mobile home's layout. Although this may require more significant changes than simply adjusting dampers, it can significantly enhance system performance when properly executed. For instance, increasing duct size in areas where airflow is restricted or redirecting ducts to bypass obstacles ensures smoother air movement throughout the entire system.


Moreover, sealing leaks within ductwork plays a vital role in maintaining balanced airflow. Leaks can cause conditioned air to escape into unconditioned spaces like crawlspaces or attics, reducing overall efficiency and effectiveness. Using mastic sealant or metal-backed tape specifically designed for HVAC systems can effectively close these gaps and prevent unnecessary loss of conditioned air.


In addition to physical adjustments within the system itself, regular maintenance is essential for sustaining optimal airflow balance over time. Changing filters regularly ensures that obstructions do not impede airflow through vents and registers. Similarly, periodic professional inspections help identify potential issues before they escalate into larger problems affecting overall comfort levels.


Lastly, incorporating technology such as smart thermostats allows homeowners greater control over their HVAC systems by enabling precise temperature adjustments based on occupancy patterns or specific zone requirements within their homes-a valuable tool when striving for ideal climate conditions across various areas simultaneously.


In conclusion, addressing common challenges associated with mobile home HVAC airflow requires careful consideration and implementation of effective balancing techniques tailored specifically toward these unique environments' demands-ultimately resulting in improved comfort levels along with enhanced energy efficiency throughout one's living space year-round without compromise!

Using Wi-Fi thermostats to manage mobile home temperatures

Using Wi-Fi thermostats to manage mobile home temperatures

As we delve into the future of smart home technology, one area that is garnering significant attention is temperature management, particularly in mobile homes.. With the advent of Wi-Fi thermostats, managing temperatures remotely has become an increasingly feasible and attractive solution.

Posted by on 2024-12-28

Transitioning older HVAC units to modern refrigerants

Transitioning older HVAC units to modern refrigerants

Transitioning older HVAC units to modern refrigerants is a crucial step in enhancing energy efficiency and reducing environmental impact.. The shift from traditional refrigerants like R-22, commonly known as Freon, to more eco-friendly alternatives such as R-410A or R-32 reflects a broader commitment to sustainability.

Posted by on 2024-12-28

Installation Process: Connecting a WiFi Thermostat to a Mobile Home HVAC System

Airflow balancing is a critical process in ensuring that heating, ventilation, and air conditioning (HVAC) systems function at their optimal efficiency. This process involves adjusting the airflow within a building to ensure that all spaces receive the appropriate amount of air for comfort and energy efficiency. To successfully implement airflow balancing techniques, a variety of tools and instruments are required.


At the heart of this task is the anemometer, a device used to measure air velocity and flow rate. Anemometers come in different types, including vane anemometers, which are suitable for measuring airflow in ducts, and thermal anemometers that provide high accuracy measurements even at low velocities. These devices help technicians assess whether each room or zone within a building is receiving adequate air supply according to design specifications.


Another indispensable tool is the manometer, which measures pressure differences within the ductwork. By using a manometer, HVAC professionals can identify areas where there might be blockages or leaks causing unequal distribution of air. Alongside this, pitot tubes are often employed to measure static and dynamic pressures directly in ducts; these readings are crucial for determining total airflow rates accurately.


Flow hoods also play a vital role in the toolbox of an HVAC technician performing airflow balancing. These hoods capture air from diffusers or grilles and measure its volume flow rate directly. Flow hoods are especially useful in verifying that each vent delivers the precise amount of air as intended by design plans.


In addition to these primary instruments, various auxiliary tools such as smoke generators can be utilized to visualize airflow patterns and identify potential turbulence or dead zones within spaces-areas where air might not be circulating effectively. Moreover, infrared thermometers or cameras can be employed to detect temperature discrepancies across different zones which may indicate imbalances in airflow.


For more comprehensive analysis and documentation during balancing procedures, data loggers can be invaluable. These devices record environmental parameters over time allowing technicians to monitor changes and make informed adjustments based on real-time data rather than relying solely on momentary readings.


Finally, software-based solutions have become increasingly prevalent in modern HVAC system management. Advanced programs designed specifically for airflow analysis allow professionals to simulate different configurations before implementing physical changes, thus minimizing trial-and-error efforts on-site.


In conclusion, achieving effective airflow balancing requires not only skill but also the correct suite of tools and instruments tailored for precision measurement and problem-solving within complex HVAC networks. As technology continues to advance alongside evolving building standards, staying updated with both traditional tools like anemometers and innovative software solutions ensures that technicians remain equipped to deliver environments characterized by optimal comfort and energy efficiency.

Installation Process: Connecting a WiFi Thermostat to a Mobile Home HVAC System

Setting Up Remote Access: Configuring Apps and Devices for Control

Evaluating current airflow in a building is a critical step in implementing effective airflow balancing techniques. Proper airflow ensures that heating, ventilation, and air conditioning (HVAC) systems operate efficiently, providing comfort while minimizing energy consumption. The process involves several systematic steps that help identify and rectify any discrepancies in the distribution of air within the space.


The first step in evaluating current airflow is to conduct a comprehensive assessment of the existing HVAC system. This involves inspecting all components, including ducts, vents, filters, and mechanical parts like fans and blowers. Understanding the layout and condition of these elements provides insight into potential issues affecting airflow distribution. It's crucial at this stage to ensure that all equipment is clean and functioning correctly because dirt and obstructions are common culprits for impaired airflow.


Next, it's important to measure the actual airflow throughout different zones or rooms within the building. This typically requires using specialized instruments such as anemometers or flow hoods to gauge air velocity and volume at various outputs like diffusers or registers. These measurements are compared against design specifications to identify areas where there might be significant deviations from expected performance.


Once data collection is complete, analyzing this information helps pinpoint specific problems like uneven distribution or inadequate ventilation in certain areas. For instance, if one room receives significantly less air than others despite similar size and usage patterns, it could indicate issues such as duct leakage or blockages.


After identifying problem areas through measurement and analysis, you can begin devising solutions for balancing airflow effectively. Common techniques involve adjusting dampers within the ductwork to redistribute air more evenly across different parts of the building. In some cases, resizing or reconfiguring duct sections might be necessary to eliminate bottlenecks causing pressure imbalances.


It's also essential during this phase to consider external factors influencing airflow dynamics - for example, changes in building occupancy patterns or modifications to interior layouts can affect how air moves through a space. A holistic approach that considers both mechanical adjustments and environmental factors will yield better results.


Finally, after implementing adjustments based on your evaluation findings, it's vital to conduct follow-up assessments to verify improvements in airflow balance have been achieved successfully. Continuous monitoring over time ensures that any further shifts in conditions are promptly addressed before they escalate into larger efficiency problems.


In conclusion, evaluating current airflow as part of implementing balancing techniques involves detailed inspection, precise measurement & analysis followed by targeted interventions aimed at optimizing system performance holistically while maintaining occupant comfort levels efficiently across varied operational scenarios within buildings today!

Energy Efficiency and Cost Savings with Remote Access in Mobile Homes

Airflow balancing is a crucial aspect of HVAC (Heating, Ventilation, and Air Conditioning) systems that ensures comfort, efficiency, and optimal performance. When ductwork is not properly balanced, some areas of a building may receive too much air while others receive too little. This imbalance can lead to discomfort for occupants, increased energy costs, and unnecessary strain on the HVAC system. To address these issues, implementing effective techniques for adjusting and optimizing ductwork becomes essential.


One fundamental technique in airflow balancing is the use of dampers. Dampers are adjustable plates located within the ductwork that control the flow of air to different zones or rooms. By carefully adjusting these dampers, technicians can ensure that each area receives the appropriate amount of air based on its size and usage. This adjustment often requires a methodical approach where measurements of airflow are taken before and after adjustments to confirm improvements.


Another important technique involves inspecting and sealing any leaks in the ductwork. Leaks can cause significant losses in airflow efficiency by allowing conditioned air to escape into unconditioned spaces such as attics or crawl spaces. Sealing leaks with mastic or metal-backed tape helps maintain consistent pressure throughout the system and prevents energy loss.


Balancing also heavily relies on proper design considerations during installation. Ensuring that ducts are appropriately sized for their intended purpose can prevent many common issues associated with improper airflow distribution. Overly large ducts might lead to reduced velocity causing poor delivery in certain zones while undersized ducts could restrict necessary airflow altogether.


In addition to physical adjustments, modern technology offers advanced solutions like variable air volume (VAV) systems which automatically adjust airflow based on real-time data from sensors placed throughout the building. These systems provide dynamic balancing capabilities that respond immediately to changes in occupancy or environmental conditions.


Finally, regular maintenance plays an indispensable role in keeping an HVAC system balanced over time. Filters should be replaced routinely to avoid blockages that impede airflow, and components should be inspected for wear or damage that could affect performance.


In conclusion, implementing effective techniques for adjusting and optimizing ductwork through methods such as damper adjustment, leak sealing, proper design consideration, utilization of advanced technologies like VAV systems, and ongoing maintenance can significantly enhance HVAC performance. These efforts not only improve comfort levels within a space but also contribute to energy savings and longevity of the equipment itself - all vital elements for sustainable building management practices today.

Troubleshooting Common Issues with WiFi Thermostat Integration

Monitoring and maintenance are integral components of ensuring sustained performance in any system, particularly when implementing airflow balancing techniques. Airflow balancing is a critical aspect of HVAC systems, which ensures that air is evenly distributed throughout a building, optimizing comfort, energy efficiency, and indoor air quality. However, achieving an ideal balance is not a one-time task; it requires ongoing attention to maintain the desired state.


The process of monitoring involves regularly checking system parameters and performance metrics to ensure that they remain within the targeted range. For airflow systems, this means continuously measuring variables such as air pressure, velocity, temperature differentials, and humidity levels across various zones. By employing advanced sensors and data analytics tools, facility managers can gain real-time insights into the system's health. These tools can alert them to any deviations from normal operating conditions, allowing for quick corrective action before minor issues escalate into significant problems.


Maintenance complements monitoring by addressing identified issues through routine inspections and proactive adjustments. Regular maintenance activities might include cleaning filters and ducts to prevent blockages that could disrupt airflow or adjusting dampers to correct imbalances detected during monitoring processes. Furthermore, it may involve recalibrating control systems or replacing worn-out components that could impair system efficiency.


Together, monitoring and maintenance form a feedback loop essential for sustaining optimal performance over time. This dynamic approach helps in adapting to changing conditions such as seasonal variations or modifications in building occupancy patterns which might affect airflow requirements. Additionally, it contributes significantly to extending the lifespan of HVAC equipment by preventing undue wear-and-tear caused by operational inefficiencies.


Beyond technical benefits, maintaining balanced airflow has broader implications for occupant comfort and environmental responsibility. Properly balanced systems ensure consistent temperatures throughout a building while minimizing energy consumption-key considerations in both residential settings aiming for comfort and commercial ones targeting productivity gains alongside sustainability goals.


In conclusion, implementing airflow balancing techniques without incorporating robust monitoring and maintenance strategies would be incomplete. These practices are necessary not only for achieving but also sustaining an efficient and effective ventilation system over time. As technology advances continue to enhance these capabilities with smarter solutions like IoT-enabled devices or AI-driven analytics platforms-the potential for even more precise control over environmental conditions becomes increasingly attainable-further underscoring their importance in modern building management strategies.

Future Trends: Advancements in Smart Technology for Mobile Home Climate Control

In the realm of modern building management and HVAC systems, the importance of balanced airflow cannot be overstated. As we continue to advance towards more sustainable living, implementing airflow balancing techniques is becoming crucial not only for comfort but also for energy efficiency and system longevity. These techniques ensure that air is evenly distributed throughout a building, optimizing performance, reducing energy consumption, and extending the lifespan of HVAC components.


Balanced airflow plays a pivotal role in minimizing energy consumption. When airflow is uneven-often due to poorly designed ductwork or obstructed vents-some areas may receive too much air while others receive too little. This imbalance forces HVAC systems to work harder to maintain desired temperatures across all zones within a building. The result is increased energy usage as the system compensates for these discrepancies by continuously cycling on and off or running at higher outputs than necessary. By employing techniques such as adjusting dampers, sealing leaks, and recalibrating fans, buildings can achieve more uniform airflow distribution. This optimization leads directly to reduced operational costs as systems operate more efficiently.


Moreover, implementing balanced airflow contributes significantly to system longevity. HVAC systems under constant strain from imbalanced airflows are prone to wear and tear, leading to frequent breakdowns and costly repairs. Components such as compressors, motors, and fans are particularly susceptible when forced to operate beyond their intended capacity due to uneven distribution of air pressure. By ensuring that each part of the system functions within its optimal range through proper balancing techniques, wear is minimized, maintenance needs are reduced, and the overall lifespan of the equipment is extended.


Additionally, consistent airflow offers enhanced indoor comfort-a factor often overlooked in discussions about energy savings and durability but equally important for occupant satisfaction. Spaces with balanced air distribution experience fewer hot or cold spots and maintain stable humidity levels. This consistency not only improves comfort but also reduces unnecessary adjustments by occupants that can lead to further inefficiencies.


Implementing effective airflow balancing techniques requires a comprehensive understanding of a building's unique characteristics alongside meticulous attention to detail during installation and maintenance phases. Technicians must evaluate duct layouts, calculate precise flow rates needed for different zones, and make adjustments accordingly using tools such as anemometers or flow hoods.


In conclusion, embracing balanced airflow presents numerous benefits that align perfectly with modern priorities centered around sustainability and efficiency. By reducing energy consumption through optimized performance while simultaneously extending system longevity via reduced mechanical stressors-and improving occupant comfort along the way-these practices represent a win-win scenario for both facility managers aiming for cost-effective operations and occupants seeking comfortable living environments. As we continue exploring innovative solutions within this field moving forward into an era marked by environmental consciousness coupled with technological advancement-the implementation of effective airflow balancing techniques will undoubtedly remain at its core.

Prefabrication is the practice of assembling components of a structure in a factory or other manufacturing site, and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be located. Some researchers refer it to “various materials joined together to form a component of the final installation procedure“.

The most commonly cited definition is by Goodier and Gibb in 2007, which described the process of manufacturing and preassembly of a certain number of building components, modules, and elements before their shipment and installation on construction sites.[1]

The term prefabrication also applies to the manufacturing of things other than structures at a fixed site. It is frequently used when fabrication of a section of a machine or any movable structure is shifted from the main manufacturing site to another location, and the section is supplied assembled and ready to fit. It is not generally used to refer to electrical or electronic components of a machine, or mechanical parts such as pumps, gearboxes and compressors which are usually supplied as separate items, but to sections of the body of the machine which in the past were fabricated with the whole machine. Prefabricated parts of the body of the machine may be called 'sub-assemblies' to distinguish them from the other components.

Process and theory

[edit]
Levittown, Puerto Rico

An example from house-building illustrates the process of prefabrication. The conventional method of building a house is to transport bricks, timber, cement, sand, steel and construction aggregate, etc. to the site, and to construct the house on site from these materials. In prefabricated construction, only the foundations are constructed in this way, while sections of walls, floors and roof are prefabricated (assembled) in a factory (possibly with window and door frames included), transported to the site, lifted into place by a crane and bolted together.

Prefabrication is used in the manufacture of ships, aircraft and all kinds of vehicles and machines where sections previously assembled at the final point of manufacture are assembled elsewhere instead, before being delivered for final assembly.

The theory behind the method is that time and cost is saved if similar construction tasks can be grouped, and assembly line techniques can be employed in prefabrication at a location where skilled labour is available, while congestion at the assembly site, which wastes time, can be reduced. The method finds application particularly where the structure is composed of repeating units or forms, or where multiple copies of the same basic structure are being constructed. Prefabrication avoids the need to transport so many skilled workers to the construction site, and other restricting conditions such as a lack of power, lack of water, exposure to harsh weather or a hazardous environment are avoided. Against these advantages must be weighed the cost of transporting prefabricated sections and lifting them into position as they will usually be larger, more fragile and more difficult to handle than the materials and components of which they are made.

History

[edit]
"Loren" Iron House, at Old Gippstown in Moe, Australia

Prefabrication has been used since ancient times. For example, it is claimed that the world's oldest known engineered roadway, the Sweet Track constructed in England around 3800 BC, employed prefabricated timber sections brought to the site rather than assembled on-site.[citation needed]

Sinhalese kings of ancient Sri Lanka have used prefabricated buildings technology to erect giant structures, which dates back as far as 2000 years, where some sections were prepared separately and then fitted together, specially in the Kingdom of Anuradhapura and Polonnaruwa.

After the great Lisbon earthquake of 1755, the Portuguese capital, especially the Baixa district, was rebuilt by using prefabrication on an unprecedented scale. Under the guidance of Sebastião José de Carvalho e Melo, popularly known as the Marquis de Pombal, the most powerful royal minister of D. Jose I, a new Pombaline style of architecture and urban planning arose, which introduced early anti-seismic design features and innovative prefabricated construction methods, according to which large multistory buildings were entirely manufactured outside the city, transported in pieces and then assembled on site. The process, which lasted into the nineteenth century, lodged the city's residents in safe new structures unheard-of before the quake.

Also in Portugal, the town of Vila Real de Santo António in the Algarve, founded on 30 December 1773, was quickly erected through the use of prefabricated materials en masse. The first of the prefabricated stones was laid in March 1774. By 13 May 1776, the centre of the town had been finished and was officially opened.

In 19th century Australia a large number of prefabricated houses were imported from the United Kingdom.

The method was widely used in the construction of prefabricated housing in the 20th century, such as in the United Kingdom as temporary housing for thousands of urban families "bombed out" during World War II. Assembling sections in factories saved time on-site and the lightness of the panels reduced the cost of foundations and assembly on site. Coloured concrete grey and with flat roofs, prefab houses were uninsulated and cold and life in a prefab acquired a certain stigma, but some London prefabs were occupied for much longer than the projected 10 years.[2]

The Crystal Palace, erected in London in 1851, was a highly visible example of iron and glass prefabricated construction; it was followed on a smaller scale by Oxford Rewley Road railway station.

During World War II, prefabricated Cargo ships, designed to quickly replace ships sunk by Nazi U-boats became increasingly common. The most ubiquitous of these ships was the American Liberty ship, which reached production of over 2,000 units, averaging 3 per day.

Current uses

[edit]
A house being built with prefabricated concrete panels.

The most widely used form of prefabrication in building and civil engineering is the use of prefabricated concrete and prefabricated steel sections in structures where a particular part or form is repeated many times. It can be difficult to construct the formwork required to mould concrete components on site, and delivering wet concrete to the site before it starts to set requires precise time management. Pouring concrete sections in a factory brings the advantages of being able to re-use moulds and the concrete can be mixed on the spot without having to be transported to and pumped wet on a congested construction site. Prefabricating steel sections reduces on-site cutting and welding costs as well as the associated hazards.

Prefabrication techniques are used in the construction of apartment blocks, and housing developments with repeated housing units. Prefabrication is an essential part of the industrialization of construction.[3] The quality of prefabricated housing units had increased to the point that they may not be distinguishable from traditionally built units to those that live in them. The technique is also used in office blocks, warehouses and factory buildings. Prefabricated steel and glass sections are widely used for the exterior of large buildings.

Detached houses, cottages, log cabin, saunas, etc. are also sold with prefabricated elements. Prefabrication of modular wall elements allows building of complex thermal insulation, window frame components, etc. on an assembly line, which tends to improve quality over on-site construction of each individual wall or frame. Wood construction in particular benefits from the improved quality. However, tradition often favors building by hand in many countries, and the image of prefab as a "cheap" method only slows its adoption. However, current practice already allows the modifying the floor plan according to the customer's requirements and selecting the surfacing material, e.g. a personalized brick facade can be masoned even if the load-supporting elements are timber.

Today, prefabrication is used in various industries and construction sectors such as healthcare, retail, hospitality, education, and public administration, due to its many advantages and benefits over traditional on-site construction, such as reduced installation time and cost savings.[4] Being used in single-story buildings as well as in multi-story projects and constructions. Providing the possibility of applying it to a specific part of the project or to the whole of it.

The efficiency and speed in the execution times of these works offer that, for example, in the case of the educational sector, it is possible to execute the projects without the cessation of the operations of the educational facilities during the development of the same.

Transportation of prefabricated Airbus wing assembly

Prefabrication saves engineering time on the construction site in civil engineering projects. This can be vital to the success of projects such as bridges and avalanche galleries, where weather conditions may only allow brief periods of construction. Prefabricated bridge elements and systems offer bridge designers and contractors significant advantages in terms of construction time, safety, environmental impact, constructibility, and cost. Prefabrication can also help minimize the impact on traffic from bridge building. Additionally, small, commonly used structures such as concrete pylons are in most cases prefabricated.

Radio towers for mobile phone and other services often consist of multiple prefabricated sections. Modern lattice towers and guyed masts are also commonly assembled of prefabricated elements.

Prefabrication has become widely used in the assembly of aircraft and spacecraft, with components such as wings and fuselage sections often being manufactured in different countries or states from the final assembly site. However, this is sometimes for political rather than commercial reasons, such as for Airbus.

Advantages

[edit]
  • Moving partial assemblies from a factory often costs less than moving pre-production resources to each site
  • Deploying resources on-site can add costs; prefabricating assemblies can save costs by reducing on-site work
  • Factory tools - jigs, cranes, conveyors, etc. - can make production faster and more precise
  • Factory tools - shake tables, hydraulic testers, etc. - can offer added quality assurance
  • Consistent indoor environments of factories eliminate most impacts of weather on production
  • Cranes and reusable factory supports can allow shapes and sequences without expensive on-site falsework
  • Higher-precision factory tools can aid more controlled movement of building heat and air, for lower energy consumption and healthier buildings
  • Factory production can facilitate more optimal materials usage, recycling, noise capture, dust capture, etc.
  • Machine-mediated parts movement, and freedom from wind and rain can improve construction safety
  • Homogeneous manufacturing allows high standardization and quality control, ensuring quality requirements subject to performance and resistance tests, which also facilitate high scalability of construction projects. [5]
  • The specific production processes in industrial assembly lines allow high sustainability, which enables savings of up to 20% of the total final cost, as well as considerable savings in indirect costs. [6]

Disadvantages

[edit]
  • Transportation costs may be higher for voluminous prefabricated sections (especially sections so big that they constitute oversize loads requiring special signage, escort vehicles, and temporary road closures) than for their constituent materials, which can often be packed more densely and are more likely to fit onto standard-sized vehicles.
  • Large prefabricated sections may require heavy-duty cranes and precision measurement and handling to place in position.

Off-site fabrication

[edit]

Off-site fabrication is a process that incorporates prefabrication and pre-assembly. The process involves the design and manufacture of units or modules, usually remote from the work site, and the installation at the site to form the permanent works at the site. In its fullest sense, off-site fabrication requires a project strategy that will change the orientation of the project process from construction to manufacture to installation. Examples of off-site fabrication are wall panels for homes, wooden truss bridge spans, airport control stations.

There are four main categories of off-site fabrication, which is often also referred to as off-site construction. These can be described as component (or sub-assembly) systems, panelised systems, volumetric systems, and modular systems. Below these categories different branches, or technologies are being developed. There are a vast number of different systems on the market which fall into these categories and with recent advances in digital design such as building information modeling (BIM), the task of integrating these different systems into a construction project is becoming increasingly a "digital" management proposition.

The prefabricated construction market is booming. It is growing at an accelerated pace both in more established markets such as North America and Europe and in emerging economies such as the Asia-Pacific region (mainly China and India). Considerable growth is expected in the coming years, with the prefabricated modular construction market expected to grow at a CAGR (compound annual growth rate) of 8% between 2022 and 2030. It is expected to reach USD 271 billion by 2030. [7]

See also

[edit]
  • Prefabricated home
  • Prefabricated buildings
  • Concrete perpend
  • Panelák
  • Tower block
  • St Crispin's School — an example of a prefabricated school building
  • Nonsuch House, first prefabricated building
  • Agile construction
  • Intermediate good

References

[edit]
  1. ^ (2022) Modularity clustering of economic development and ESG attributes in prefabricated building research. Frontiers in Environmental Science, 10. Retrieved from https://www.frontiersin.org/articles/10.3389/fenvs.2022.977887
  2. ^ Sargeant, Tony Anthony J. (11 November 2016) [2016-09-10]. "'Prefabs' in South London – built as emergency housing just after WW2 and meant to last for just 10 years". Tonyjsargeant.wordpress.com. Archived from the original on 14 October 2016. Retrieved 19 July 2018.
  3. ^ Goh, Edward; Loosemore, Martin (4 May 2017). "The impacts of industrialization on construction subcontractors: a resource based view". Construction Management and Economics. 35 (5): 288–304. doi:10.1080/01446193.2016.1253856. ISSN 0144-6193.
  4. ^ Details about the modular construction market. Hydrodiseno.com. 2022-08-17. Retrieved 2023-01-05
  5. ^ Zhou, Jingyang; Li, Yonghan; Ren, Dandan (November 2022). "Quantitative study on external benefits of prefabricated buildings: From perspectives of economy, environment, and society". Sustainable Cities and Society. 86. Bibcode:2022SusCS..8604132Z. doi:10.1016/j.scs.2022.104132.
  6. ^ Why Choose Modular Construction? Hydrodiseno.com. 2021-07-29. Retrieved 2023-03-07
  7. ^ Modular Construction Market Size is projected to reach USD 271 Billion by 2030, growing at a CAGR of 8%: Straits Research. Globenewswire.com. 2022-06-18. Retrieved 2023-02-16

Sources

[edit]

 

"Prefabricated Building Construction Systems Adopted in Hong Kong" (PDF). Retrieved 20 August 2013.

 

 

An ab anbar (water reservoir) with double domes and windcatchers (openings near the top of the towers) in the central desert city of Naeen, Iran. Windcatchers are a form of natural ventilation.[1]

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.

The intentional introduction of outdoor air is usually categorized as either mechanical ventilation, natural ventilation, or mixed-mode ventilation.[2]

  • Mechanical ventilation is the intentional fan-driven flow of outdoor air into and/or out from a building. Mechanical ventilation systems may include supply fans (which push outdoor air into a building), exhaust[3] fans (which draw air out of a building and thereby cause equal ventilation flow into a building), or a combination of both (called balanced ventilation if it neither pressurizes nor depressurizes the inside air,[3] or only slightly depressurizes it). Mechanical ventilation is often provided by equipment that is also used to heat and cool a space.
  • Natural ventilation is the intentional passive flow of outdoor air into a building through planned openings (such as louvers, doors, and windows). Natural ventilation does not require mechanical systems to move outdoor air. Instead, it relies entirely on passive physical phenomena, such as wind pressure, or the stack effect. Natural ventilation openings may be fixed, or adjustable. Adjustable openings may be controlled automatically (automated), owned by occupants (operable), or a combination of both. Cross ventilation is a phenomenon of natural ventilation.
  • Mixed-mode ventilation systems use both mechanical and natural processes. The mechanical and natural components may be used at the same time, at different times of day, or in different seasons of the year.[4] Since natural ventilation flow depends on environmental conditions, it may not always provide an appropriate amount of ventilation. In this case, mechanical systems may be used to supplement or regulate the naturally driven flow.

Ventilation is typically described as separate from infiltration.

  • Infiltration is the circumstantial flow of air from outdoors to indoors through leaks (unplanned openings) in a building envelope. When a building design relies on infiltration to maintain indoor air quality, this flow has been referred to as adventitious ventilation.[5]

The design of buildings that promote occupant health and well-being requires a clear understanding of the ways that ventilation airflow interacts with, dilutes, displaces, or introduces pollutants within the occupied space. Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[6] A clear understanding of both indoor and outdoor air quality parameters is needed to improve the performance of ventilation in terms of occupant health and energy.[7] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[8] In kitchen ventilation systems, or for laboratory fume hoods, the design of effective effluent capture can be more important than the bulk amount of ventilation in a space. More generally, the way that an air distribution system causes ventilation to flow into and out of a space impacts the ability of a particular ventilation rate to remove internally generated pollutants. The ability of a system to reduce pollution in space is described as its "ventilation effectiveness". However, the overall impacts of ventilation on indoor air quality can depend on more complex factors such as the sources of pollution, and the ways that activities and airflow interact to affect occupant exposure.

An array of factors related to the design and operation of ventilation systems are regulated by various codes and standards. Standards dealing with the design and operation of ventilation systems to achieve acceptable indoor air quality include the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standards 62.1 and 62.2, the International Residential Code, the International Mechanical Code, and the United Kingdom Building Regulations Part F. Other standards that focus on energy conservation also impact the design and operation of ventilation systems, including ASHRAE Standard 90.1, and the International Energy Conservation Code.

When indoor and outdoor conditions are favorable, increasing ventilation beyond the minimum required for indoor air quality can significantly improve both indoor air quality and thermal comfort through ventilative cooling, which also helps reduce the energy demand of buildings.[9][10] During these times, higher ventilation rates, achieved through passive or mechanical means (air-side economizer, ventilative pre-cooling), can be particularly beneficial for enhancing people's physical health.[11] Conversely, when conditions are less favorable, maintaining or improving indoor air quality through ventilation may require increased use of mechanical heating or cooling, leading to higher energy consumption.

Ventilation should be considered for its relationship to "venting" for appliances and combustion equipment such as water heaters, furnaces, boilers, and wood stoves. Most importantly, building ventilation design must be careful to avoid the backdraft of combustion products from "naturally vented" appliances into the occupied space. This issue is of greater importance for buildings with more air-tight envelopes. To avoid the hazard, many modern combustion appliances utilize "direct venting" which draws combustion air directly from outdoors, instead of from the indoor environment.

Design of air flow in rooms

[edit]

The air in a room can be supplied and removed in several ways, for example via ceiling ventilation, cross ventilation, floor ventilation or displacement ventilation.[citation needed]

Furthermore, the air can be circulated in the room using vortexes which can be initiated in various ways:

Ventilation rates for indoor air quality

[edit]

The ventilation rate, for commercial, industrial, and institutional (CII) buildings, is normally expressed by the volumetric flow rate of outdoor air, introduced to the building. The typical units used are cubic feet per minute (CFM) in the imperial system, or liters per second (L/s) in the metric system (even though cubic meter per second is the preferred unit for volumetric flow rate in the SI system of units). The ventilation rate can also be expressed on a per person or per unit floor area basis, such as CFM/p or CFM/ft², or as air changes per hour (ACH).

Standards for residential buildings

[edit]

For residential buildings, which mostly rely on infiltration for meeting their ventilation needs, a common ventilation rate measure is the air change rate (or air changes per hour): the hourly ventilation rate divided by the volume of the space (I or ACH; units of 1/h). During the winter, ACH may range from 0.50 to 0.41 in a tightly air-sealed house to 1.11 to 1.47 in a loosely air-sealed house.[12]

ASHRAE now recommends ventilation rates dependent upon floor area, as a revision to the 62-2001 standard, in which the minimum ACH was 0.35, but no less than 15 CFM/person (7.1 L/s/person). As of 2003, the standard has been changed to 3 CFM/100 sq. ft. (15 L/s/100 sq. m.) plus 7.5 CFM/person (3.5 L/s/person).[13]

Standards for commercial buildings

[edit]

Ventilation rate procedure

[edit]

Ventilation Rate Procedure is rate based on standard and prescribes the rate at which ventilation air must be delivered to space and various means to the condition that air.[14] Air quality is assessed (through CO2 measurement) and ventilation rates are mathematically derived using constants. Indoor Air Quality Procedure uses one or more guidelines for the specification of acceptable concentrations of certain contaminants in indoor air but does not prescribe ventilation rates or air treatment methods.[14] This addresses both quantitative and subjective evaluations and is based on the Ventilation Rate Procedure. It also accounts for potential contaminants that may have no measured limits, or for which no limits are not set (such as formaldehyde off-gassing from carpet and furniture).

Natural ventilation

[edit]

Natural ventilation harnesses naturally available forces to supply and remove air in an enclosed space. Poor ventilation in rooms is identified to significantly increase the localized moldy smell in specific places of the room including room corners.[11] There are three types of natural ventilation occurring in buildings: wind-driven ventilation, pressure-driven flows, and stack ventilation.[15] The pressures generated by 'the stack effect' rely upon the buoyancy of heated or rising air. Wind-driven ventilation relies upon the force of the prevailing wind to pull and push air through the enclosed space as well as through breaches in the building's envelope.

Almost all historic buildings were ventilated naturally.[16] The technique was generally abandoned in larger US buildings during the late 20th century as the use of air conditioning became more widespread. However, with the advent of advanced Building Performance Simulation (BPS) software, improved Building Automation Systems (BAS), Leadership in Energy and Environmental Design (LEED) design requirements, and improved window manufacturing techniques; natural ventilation has made a resurgence in commercial buildings both globally and throughout the US.[17]

The benefits of natural ventilation include:

  • Improved indoor air quality (IAQ)
  • Energy savings
  • Reduction of greenhouse gas emissions
  • Occupant control
  • Reduction in occupant illness associated with sick building syndrome
  • Increased worker productivity

Techniques and architectural features used to ventilate buildings and structures naturally include, but are not limited to:

  • Operable windows
  • Clerestory windows and vented skylights
  • Lev/convection doors
  • Night purge ventilation
  • Building orientation
  • Wind capture façades

Airborne diseases

[edit]

Natural ventilation is a key factor in reducing the spread of airborne illnesses such as tuberculosis, the common cold, influenza, meningitis or COVID-19.[18] Opening doors and windows are good ways to maximize natural ventilation, which would make the risk of airborne contagion much lower than with costly and maintenance-requiring mechanical systems. Old-fashioned clinical areas with high ceilings and large windows provide the greatest protection. Natural ventilation costs little and is maintenance-free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion. Natural ventilation requires little maintenance and is inexpensive.[19]

Natural ventilation is not practical in much of the infrastructure because of climate. This means that the facilities need to have effective mechanical ventilation systems and or use Ceiling Level UV or FAR UV ventilation systems.

Ventilation is measured in terms of air changes per hour (ACH). As of 2023, the CDC recommends that all spaces have a minimum of 5 ACH.[20] For hospital rooms with airborne contagions the CDC recommends a minimum of 12 ACH.[21] Challenges in facility ventilation are public unawareness,[22][23] ineffective government oversight, poor building codes that are based on comfort levels, poor system operations, poor maintenance, and lack of transparency.[24]

Pressure, both political and economic, to improve energy conservation has led to decreased ventilation rates. Heating, ventilation, and air conditioning rates have dropped since the energy crisis in the 1970s and the banning of cigarette smoke in the 1980s and 1990s.[25][26][better source needed]

Mechanical ventilation

[edit]
An axial belt-drive exhaust fan serving an underground car park. This exhaust fan's operation is interlocked with the concentration of contaminants emitted by internal combustion engines.

Mechanical ventilation of buildings and structures can be achieved by the use of the following techniques:

  • Whole-house ventilation
  • Mixing ventilation
  • Displacement ventilation
  • Dedicated subaerial air supply

Demand-controlled ventilation (DCV)

[edit]

Demand-controlled ventilation (DCV, also known as Demand Control Ventilation) makes it possible to maintain air quality while conserving energy.[27][28] ASHRAE has determined that "It is consistent with the ventilation rate procedure that demand control be permitted for use to reduce the total outdoor air supply during periods of less occupancy."[29] In a DCV system, CO2 sensors control the amount of ventilation.[30][31] During peak occupancy, CO2 levels rise, and the system adjusts to deliver the same amount of outdoor air as would be used by the ventilation-rate procedure.[32] However, when spaces are less occupied, CO2 levels reduce, and the system reduces ventilation to conserves energy. DCV is a well-established practice,[33] and is required in high occupancy spaces by building energy standards such as ASHRAE 90.1.[34]

Personalized ventilation

[edit]

Personalized ventilation is an air distribution strategy that allows individuals to control the amount of ventilation received. The approach delivers fresh air more directly to the breathing zone and aims to improve the air quality of inhaled air. Personalized ventilation provides much higher ventilation effectiveness than conventional mixing ventilation systems by displacing pollution from the breathing zone with far less air volume. Beyond improved air quality benefits, the strategy can also improve occupants' thermal comfort, perceived air quality, and overall satisfaction with the indoor environment. Individuals' preferences for temperature and air movement are not equal, and so traditional approaches to homogeneous environmental control have failed to achieve high occupant satisfaction. Techniques such as personalized ventilation facilitate control of a more diverse thermal environment that can improve thermal satisfaction for most occupants.

Local exhaust ventilation

[edit]

Local exhaust ventilation addresses the issue of avoiding the contamination of indoor air by specific high-emission sources by capturing airborne contaminants before they are spread into the environment. This can include water vapor control, lavatory effluent control, solvent vapors from industrial processes, and dust from wood- and metal-working machinery. Air can be exhausted through pressurized hoods or the use of fans and pressurizing a specific area.[35]
A local exhaust system is composed of five basic parts:

  1. A hood that captures the contaminant at its source
  2. Ducts for transporting the air
  3. An air-cleaning device that removes/minimizes the contaminant
  4. A fan that moves the air through the system
  5. An exhaust stack through which the contaminated air is discharged[35]

In the UK, the use of LEV systems has regulations set out by the Health and Safety Executive (HSE) which are referred to as the Control of Substances Hazardous to Health (CoSHH). Under CoSHH, legislation is set to protect users of LEV systems by ensuring that all equipment is tested at least every fourteen months to ensure the LEV systems are performing adequately. All parts of the system must be visually inspected and thoroughly tested and where any parts are found to be defective, the inspector must issue a red label to identify the defective part and the issue.

The owner of the LEV system must then have the defective parts repaired or replaced before the system can be used.

Smart ventilation

[edit]

Smart ventilation is a process of continually adjusting the ventilation system in time, and optionally by location, to provide the desired IAQ benefits while minimizing energy consumption, utility bills, and other non-IAQ costs (such as thermal discomfort or noise). A smart ventilation system adjusts ventilation rates in time or by location in a building to be responsive to one or more of the following: occupancy, outdoor thermal and air quality conditions, electricity grid needs, direct sensing of contaminants, operation of other air moving and air cleaning systems. In addition, smart ventilation systems can provide information to building owners, occupants, and managers on operational energy consumption and indoor air quality as well as a signal when systems need maintenance or repair. Being responsive to occupancy means that a smart ventilation system can adjust ventilation depending on demand such as reducing ventilation if the building is unoccupied. Smart ventilation can time-shift ventilation to periods when a) indoor-outdoor temperature differences are smaller (and away from peak outdoor temperatures and humidity), b) when indoor-outdoor temperatures are appropriate for ventilative cooling, or c) when outdoor air quality is acceptable. Being responsive to electricity grid needs means providing flexibility to electricity demand (including direct signals from utilities) and integration with electric grid control strategies. Smart ventilation systems can have sensors to detect airflow, systems pressures, or fan energy use in such a way that systems failures can be detected and repaired, as well as when system components need maintenance, such as filter replacement.[36]

Ventilation and combustion

[edit]

Combustion (in a fireplace, gas heater, candle, oil lamp, etc.) consumes oxygen while producing carbon dioxide and other unhealthy gases and smoke, requiring ventilation air. An open chimney promotes infiltration (i.e. natural ventilation) because of the negative pressure change induced by the buoyant, warmer air leaving through the chimney. The warm air is typically replaced by heavier, cold air.

Ventilation in a structure is also needed for removing water vapor produced by respiration, burning, and cooking, and for removing odors. If water vapor is permitted to accumulate, it may damage the structure, insulation, or finishes. [citation needed] When operating, an air conditioner usually removes excess moisture from the air. A dehumidifier may also be appropriate for removing airborne moisture.

Calculation for acceptable ventilation rate

[edit]

Ventilation guidelines are based on the minimum ventilation rate required to maintain acceptable levels of effluents. Carbon dioxide is used as a reference point, as it is the gas of highest emission at a relatively constant value of 0.005 L/s. The mass balance equation is:

Q = G/(Ci − Ca)

  • Q = ventilation rate (L/s)
  • G = CO2 generation rate
  • Ci = acceptable indoor CO2 concentration
  • Ca = ambient CO2 concentration[37]

Smoking and ventilation

[edit]

ASHRAE standard 62 states that air removed from an area with environmental tobacco smoke shall not be recirculated into ETS-free air. A space with ETS requires more ventilation to achieve similar perceived air quality to that of a non-smoking environment.

The amount of ventilation in an ETS area is equal to the amount of an ETS-free area plus the amount V, where:

V = DSD × VA × A/60E

  • V = recommended extra flow rate in CFM (L/s)
  • DSD = design smoking density (estimated number of cigarettes smoked per hour per unit area)
  • VA = volume of ventilation air per cigarette for the room being designed (ft3/cig)
  • E = contaminant removal effectiveness[38]

History

[edit]
This ancient Roman house uses a variety of passive cooling and passive ventilation techniques. Heavy masonry walls, small exterior windows, and a narrow walled garden oriented N-S shade the house, preventing heat gain. The house opens onto a central atrium with an impluvium (open to the sky); the evaporative cooling of the water causes a cross-draft from atrium to garden.

Primitive ventilation systems were found at the Pločnik archeological site (belonging to the Vinča culture) in Serbia and were built into early copper smelting furnaces. The furnace, built on the outside of the workshop, featured earthen pipe-like air vents with hundreds of tiny holes in them and a prototype chimney to ensure air goes into the furnace to feed the fire and smoke comes out safely.[39]

Passive ventilation and passive cooling systems were widely written about around the Mediterranean by Classical times. Both sources of heat and sources of cooling (such as fountains and subterranean heat reservoirs) were used to drive air circulation, and buildings were designed to encourage or exclude drafts, according to climate and function. Public bathhouses were often particularly sophisticated in their heating and cooling. Icehouses are some millennia old, and were part of a well-developed ice industry by classical times.

The development of forced ventilation was spurred by the common belief in the late 18th and early 19th century in the miasma theory of disease, where stagnant 'airs' were thought to spread illness. An early method of ventilation was the use of a ventilating fire near an air vent which would forcibly cause the air in the building to circulate. English engineer John Theophilus Desaguliers provided an early example of this when he installed ventilating fires in the air tubes on the roof of the House of Commons. Starting with the Covent Garden Theatre, gas burning chandeliers on the ceiling were often specially designed to perform a ventilating role.

Mechanical systems

[edit]
The Central Tower of the Palace of Westminster. This octagonal spire was for ventilation purposes, in the more complex system imposed by Reid on Barry, in which it was to draw air out of the Palace. The design was for the aesthetic disguise of its function.[40][41]

A more sophisticated system involving the use of mechanical equipment to circulate the air was developed in the mid-19th century. A basic system of bellows was put in place to ventilate Newgate Prison and outlying buildings, by the engineer Stephen Hales in the mid-1700s. The problem with these early devices was that they required constant human labor to operate. David Boswell Reid was called to testify before a Parliamentary committee on proposed architectural designs for the new House of Commons, after the old one burned down in a fire in 1834.[40] In January 1840 Reid was appointed by the committee for the House of Lords dealing with the construction of the replacement for the Houses of Parliament. The post was in the capacity of ventilation engineer, in effect; and with its creation there began a long series of quarrels between Reid and Charles Barry, the architect.[42]

Reid advocated the installation of a very advanced ventilation system in the new House. His design had air being drawn into an underground chamber, where it would undergo either heating or cooling. It would then ascend into the chamber through thousands of small holes drilled into the floor, and would be extracted through the ceiling by a special ventilation fire within a great stack.[43]

Reid's reputation was made by his work in Westminster. He was commissioned for an air quality survey in 1837 by the Leeds and Selby Railway in their tunnel.[44] The steam vessels built for the Niger expedition of 1841 were fitted with ventilation systems based on Reid's Westminster model.[45] Air was dried, filtered and passed over charcoal.[46][47] Reid's ventilation method was also applied more fully to St. George's Hall, Liverpool, where the architect, Harvey Lonsdale Elmes, requested that Reid should be involved in ventilation design.[48] Reid considered this the only building in which his system was completely carried out.[49]

Fans

[edit]

With the advent of practical steam power, ceiling fans could finally be used for ventilation. Reid installed four steam-powered fans in the ceiling of St George's Hospital in Liverpool, so that the pressure produced by the fans would force the incoming air upward and through vents in the ceiling. Reid's pioneering work provides the basis for ventilation systems to this day.[43] He was remembered as "Dr. Reid the ventilator" in the twenty-first century in discussions of energy efficiency, by Lord Wade of Chorlton.[50]

History and development of ventilation rate standards

[edit]

Ventilating a space with fresh air aims to avoid "bad air". The study of what constitutes bad air dates back to the 1600s when the scientist Mayow studied asphyxia of animals in confined bottles.[51] The poisonous component of air was later identified as carbon dioxide (CO2), by Lavoisier in the very late 1700s, starting a debate as to the nature of "bad air" which humans perceive to be stuffy or unpleasant. Early hypotheses included excess concentrations of CO2 and oxygen depletion. However, by the late 1800s, scientists thought biological contamination, not oxygen or CO2, was the primary component of unacceptable indoor air. However, it was noted as early as 1872 that CO2 concentration closely correlates to perceived air quality.

The first estimate of minimum ventilation rates was developed by Tredgold in 1836.[52] This was followed by subsequent studies on the topic by Billings [53] in 1886 and Flugge in 1905. The recommendations of Billings and Flugge were incorporated into numerous building codes from 1900–the 1920s and published as an industry standard by ASHVE (the predecessor to ASHRAE) in 1914.[51]

The study continued into the varied effects of thermal comfort, oxygen, carbon dioxide, and biological contaminants. The research was conducted with human subjects in controlled test chambers. Two studies, published between 1909 and 1911, showed that carbon dioxide was not the offending component. Subjects remained satisfied in chambers with high levels of CO2, so long as the chamber remained cool.[51] (Subsequently, it has been determined that CO2 is, in fact, harmful at concentrations over 50,000ppm[54])

ASHVE began a robust research effort in 1919. By 1935, ASHVE-funded research conducted by Lemberg, Brandt, and Morse – again using human subjects in test chambers – suggested the primary component of "bad air" was an odor, perceived by the human olfactory nerves.[55] Human response to odor was found to be logarithmic to contaminant concentrations, and related to temperature. At lower, more comfortable temperatures, lower ventilation rates were satisfactory. A 1936 human test chamber study by Yaglou, Riley, and Coggins culminated much of this effort, considering odor, room volume, occupant age, cooling equipment effects, and recirculated air implications, which guided ventilation rates.[56] The Yaglou research has been validated, and adopted into industry standards, beginning with the ASA code in 1946. From this research base, ASHRAE (having replaced ASHVE) developed space-by-space recommendations, and published them as ASHRAE Standard 62-1975: Ventilation for acceptable indoor air quality.

As more architecture incorporated mechanical ventilation, the cost of outdoor air ventilation came under some scrutiny. In 1973, in response to the 1973 oil crisis and conservation concerns, ASHRAE Standards 62-73 and 62–81) reduced required ventilation from 10 CFM (4.76 L/s) per person to 5 CFM (2.37 L/s) per person. In cold, warm, humid, or dusty climates, it is preferable to minimize ventilation with outdoor air to conserve energy, cost, or filtration. This critique (e.g. Tiller[57]) led ASHRAE to reduce outdoor ventilation rates in 1981, particularly in non-smoking areas. However subsequent research by Fanger,[58] W. Cain, and Janssen validated the Yaglou model. The reduced ventilation rates were found to be a contributing factor to sick building syndrome.[59]

The 1989 ASHRAE standard (Standard 62–89) states that appropriate ventilation guidelines are 20 CFM (9.2 L/s) per person in an office building, and 15 CFM (7.1 L/s) per person for schools, while 2004 Standard 62.1-2004 has lower recommendations again (see tables below). ANSI/ASHRAE (Standard 62–89) speculated that "comfort (odor) criteria are likely to be satisfied if the ventilation rate is set so that 1,000 ppm CO2 is not exceeded"[60] while OSHA has set a limit of 5000 ppm over 8 hours.[61]

Historical ventilation rates
Author or source Year Ventilation rate (IP) Ventilation rate (SI) Basis or rationale
Tredgold 1836 4 CFM per person 2 L/s per person Basic metabolic needs, breathing rate, and candle burning
Billings 1895 30 CFM per person 15 L/s per person Indoor air hygiene, preventing spread of disease
Flugge 1905 30 CFM per person 15 L/s per person Excessive temperature or unpleasant odor
ASHVE 1914 30 CFM per person 15 L/s per person Based on Billings, Flugge and contemporaries
Early US Codes 1925 30 CFM per person 15 L/s per person Same as above
Yaglou 1936 15 CFM per person 7.5 L/s per person Odor control, outdoor air as a fraction of total air
ASA 1946 15 CFM per person 7.5 L/s per person Based on Yahlou and contemporaries
ASHRAE 1975 15 CFM per person 7.5 L/s per person Same as above
ASHRAE 1981 10 CFM per person 5 L/s per person For non-smoking areas, reduced.
ASHRAE 1989 15 CFM per person 7.5 L/s per person Based on Fanger, W. Cain, and Janssen

ASHRAE continues to publish space-by-space ventilation rate recommendations, which are decided by a consensus committee of industry experts. The modern descendants of ASHRAE standard 62-1975 are ASHRAE Standard 62.1, for non-residential spaces, and ASHRAE 62.2 for residences.

In 2004, the calculation method was revised to include both an occupant-based contamination component and an area–based contamination component.[62] These two components are additive, to arrive at an overall ventilation rate. The change was made to recognize that densely populated areas were sometimes overventilated (leading to higher energy and cost) using a per-person methodology.

Occupant Based Ventilation Rates,[62] ANSI/ASHRAE Standard 62.1-2004

IP Units SI Units Category Examples
0 cfm/person 0 L/s/person Spaces where ventilation requirements are primarily associated with building elements, not occupants. Storage Rooms, Warehouses
5 cfm/person 2.5 L/s/person Spaces occupied by adults, engaged in low levels of activity Office space
7.5 cfm/person 3.5 L/s/person Spaces where occupants are engaged in higher levels of activity, but not strenuous, or activities generating more contaminants Retail spaces, lobbies
10 cfm/person 5 L/s/person Spaces where occupants are engaged in more strenuous activity, but not exercise, or activities generating more contaminants Classrooms, school settings
20 cfm/person 10 L/s/person Spaces where occupants are engaged in exercise, or activities generating many contaminants dance floors, exercise rooms

Area-based ventilation rates,[62] ANSI/ASHRAE Standard 62.1-2004

IP Units SI Units Category Examples
0.06 cfm/ft2 0.30 L/s/m2 Spaces where space contamination is normal, or similar to an office environment Conference rooms, lobbies
0.12 cfm/ft2 0.60 L/s/m2 Spaces where space contamination is significantly higher than an office environment Classrooms, museums
0.18 cfm/ft2 0.90 L/s/m2 Spaces where space contamination is even higher than the previous category Laboratories, art classrooms
0.30 cfm/ft2 1.5 L/s/m2 Specific spaces in sports or entertainment where contaminants are released Sports, entertainment
0.48 cfm/ft2 2.4 L/s/m2 Reserved for indoor swimming areas, where chemical concentrations are high Indoor swimming areas

The addition of occupant- and area-based ventilation rates found in the tables above often results in significantly reduced rates compared to the former standard. This is compensated in other sections of the standard which require that this minimum amount of air is delivered to the breathing zone of the individual occupant at all times. The total outdoor air intake of the ventilation system (in multiple-zone variable air volume (VAV) systems) might therefore be similar to the airflow required by the 1989 standard.
From 1999 to 2010, there was considerable development of the application protocol for ventilation rates. These advancements address occupant- and process-based ventilation rates, room ventilation effectiveness, and system ventilation effectiveness[63]

Problems

[edit]
  • In hot, humid climates, unconditioned ventilation air can daily deliver approximately 260 milliliters of water for each cubic meters per hour (m3/h) of outdoor air (or one pound of water each day for each cubic feet per minute of outdoor air per day), annual average.[citation needed] This is a great deal of moisture and can create serious indoor moisture and mold problems. For example, given a 150 m2 building with an airflow of 180 m3/h this could result in about 47 liters of water accumulated per day.
  • Ventilation efficiency is determined by design and layout, and is dependent upon the placement and proximity of diffusers and return air outlets. If they are located closely together, supply air may mix with stale air, decreasing the efficiency of the HVAC system, and creating air quality problems.
  • System imbalances occur when components of the HVAC system are improperly adjusted or installed and can create pressure differences (too much-circulating air creating a draft or too little circulating air creating stagnancy).
  • Cross-contamination occurs when pressure differences arise, forcing potentially contaminated air from one zone to an uncontaminated zone. This often involves undesired odors or VOCs.
  • Re-entry of exhaust air occurs when exhaust outlets and fresh air intakes are either too close, prevailing winds change exhaust patterns or infiltration between intake and exhaust air flows.
  • Entrainment of contaminated outdoor air through intake flows will result in indoor air contamination. There are a variety of contaminated air sources, ranging from industrial effluent to VOCs put off by nearby construction work.[64] A recent study revealed that in urban European buildings equipped with ventilation systems lacking outdoor air filtration, the exposure to outdoor-originating pollutants indoors resulted in more Disability-Adjusted Life Years (DALYs) than exposure to indoor-emitted pollutants.[65]

See also

[edit]
  • Architectural engineering
  • Biological safety
  • Cleanroom
  • Environmental tobacco smoke
  • Fume hood
  • Head-end power
  • Heating, ventilation, and air conditioning
  • Heat recovery ventilation
  • Mechanical engineering
  • Room air distribution
  • Sick building syndrome
  • Siheyuan
  • Solar chimney
  • Tulou
  • Windcatcher

References

[edit]
  1. ^ Malone, Alanna. "The Windcatcher House". Architectural Record: Building for Social Change. McGraw-Hill. Archived from the original on 22 April 2012.
  2. ^ ASHRAE (2021). "Ventilation and Infiltration". ASHRAE Handbook—Fundamentals. Peachtree Corners, GA: ASHRAE. ISBN 978-1-947192-90-4.
  3. ^ a b Whole-House Ventilation | Department of Energy
  4. ^ de Gids W.F., Jicha M., 2010. "Ventilation Information Paper 32: Hybrid Ventilation Archived 2015-11-17 at the Wayback Machine", Air Infiltration and Ventilation Centre (AIVC), 2010
  5. ^ Schiavon, Stefano (2014). "Adventitious ventilation: a new definition for an old mode?". Indoor Air. 24 (6): 557–558. Bibcode:2014InAir..24..557S. doi:10.1111/ina.12155. ISSN 1600-0668. PMID 25376521.
  6. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  7. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  8. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  9. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  10. ^ Belias, Evangelos; Licina, Dusan (2023). "Influence of outdoor air pollution on European residential ventilative cooling potential". Energy and Buildings. 289. Bibcode:2023EneBu.28913044B. doi:10.1016/j.enbuild.2023.113044.
  11. ^ a b Sun, Y., Zhang, Y., Bao, L., Fan, Z. and Sundell, J., 2011. Ventilation and dampness in dorms and their associations with allergy among college students in China: a case-control study. Indoor Air, 21(4), pp.277-283.
  12. ^ Kavanaugh, Steve. Infiltration and Ventilation In Residential Structures. February 2004
  13. ^ M.H. Sherman. "ASHRAE's First Residential Ventilation Standard" (PDF). Lawrence Berkeley National Laboratory. Archived from the original (PDF) on 29 February 2012.
  14. ^ a b ASHRAE Standard 62
  15. ^ How Natural Ventilation Works by Steven J. Hoff and Jay D. Harmon. Ames, IA: Department of Agricultural and Biosystems Engineering, Iowa State University, November 1994.
  16. ^ "Natural Ventilation – Whole Building Design Guide". Archived from the original on 21 July 2012.
  17. ^ Shaqe, Erlet. Sustainable Architectural Design.
  18. ^ "Natural Ventilation for Infection Control in Health-Care Settings" (PDF). World Health Organization (WHO), 2009. Retrieved 5 July 2021.
  19. ^ Escombe, A. R.; Oeser, C. C.; Gilman, R. H.; et al. (2007). "Natural ventilation for the prevention of airborne contagion". PLOS Med. 4 (68): e68. doi:10.1371/journal.pmed.0040068. PMC 1808096. PMID 17326709.
  20. ^ Centers For Disease Control and Prevention (CDC) "Improving Ventilation In Buildings". 11 February 2020.
  21. ^ Centers For Disease Control and Prevention (CDC) "Guidelines for Environmental Infection Control in Health-Care Facilities". 22 July 2019.
  22. ^ Dr. Edward A. Nardell Professor of Global Health and Social Medicine, Harvard Medical School "If We're Going to Live With COVID-19, It's Time to Clean Our Indoor Air Properly". Time. February 2022.
  23. ^ "A Paradigm Shift to Combat Indoor Respiratory Infection - 21st century" (PDF). University of Leeds., Morawska, L, Allen, J, Bahnfleth, W et al. (36 more authors) (2021) A paradigm shift to combat indoor respiratory infection. Science, 372 (6543). pp. 689-691. ISSN 0036-8075
  24. ^ Video "Building Ventilation What Everyone Should Know". YouTube. 17 June 2022.
  25. ^ Mudarri, David (January 2010). Public Health Consequences and Cost of Climate Change Impacts on Indoor Environments (PDF) (Report). The Indoor Environments Division, Office of Radiation and Indoor Air, U.S. Environmental Protection Agency. pp. 38–39, 63.
  26. ^ "Climate Change a Systems Perspective". Cassbeth.
  27. ^ Raatschen W. (ed.), 1990: "Demand Controlled Ventilation Systems: State of the Art Review Archived 2014-05-08 at the Wayback Machine", Swedish Council for Building Research, 1990
  28. ^ Mansson L.G., Svennberg S.A., Liddament M.W., 1997: "Technical Synthesis Report. A Summary of IEA Annex 18. Demand Controlled Ventilating Systems Archived 2016-03-04 at the Wayback Machine", UK, Air Infiltration and Ventilation Centre (AIVC), 1997
  29. ^ ASHRAE (2006). "Interpretation IC 62.1-2004-06 Of ANSI/ASHRAE Standard 62.1-2004 Ventilation For Acceptable Indoor Air Quality" (PDF). American Society of Heating, Refrigerating, and Air-Conditioning Engineers. p. 2. Archived from the original (PDF) on 12 August 2013. Retrieved 10 April 2013.
  30. ^ Fahlen P., Andersson H., Ruud S., 1992: "Demand Controlled Ventilation Systems: Sensor Tests Archived 2016-03-04 at the Wayback Machine", Swedish National Testing and Research Institute, Boras, 1992
  31. ^ Raatschen W., 1992: "Demand Controlled Ventilation Systems: Sensor Market Survey Archived 2016-03-04 at the Wayback Machine", Swedish Council for Building Research, 1992
  32. ^ Mansson L.G., Svennberg S.A., 1993: "Demand Controlled Ventilation Systems: Source Book Archived 2016-03-04 at the Wayback Machine", Swedish Council for Building Research, 1993
  33. ^ Lin X, Lau J & Grenville KY. (2012). "Evaluation of the Validity of the Assumptions Underlying CO2-Based Demand-Controlled Ventilation by a Literature review" (PDF). ASHRAE Transactions NY-14-007 (RP-1547). Archived from the original (PDF) on 14 July 2014. Retrieved 10 July 2014.
  34. ^ ASHRAE (2010). "ANSI/ASHRAE Standard 90.1-2010: Energy Standard for Buildings Except for Low-Rise Residential Buildings". American Society of Heating Ventilation and Air Conditioning Engineers, Atlanta, GA.
  35. ^ a b "Ventilation. - 1926.57". Osha.gov. Archived from the original on 2 December 2012. Retrieved 10 November 2012.
  36. ^ Air Infiltration and Ventilation Centre (AIVC). "What is smart ventilation?", AIVC, 2018
  37. ^ "Home". Wapa.gov. Archived from the original on 26 July 2011. Retrieved 10 November 2012.
  38. ^ ASHRAE, Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta, 2002.
  39. ^ "Stone Pages Archaeo News: Neolithic Vinca was a metallurgical culture". www.stonepages.com. Archived from the original on 30 December 2016. Retrieved 11 August 2016.
  40. ^ a b Porter, Dale H. (1998). The Life and Times of Sir Goldsworthy Gurney: Gentleman scientist and inventor, 1793–1875. Associated University Presses, Inc. pp. 177–79. ISBN 0-934223-50-5.
  41. ^ "The Towers of Parliament". www.parliament.UK. Archived from the original on 17 January 2012.
  42. ^ Alfred Barry (1867). "The life and works of Sir Charles Barry, R.A., F.R.S., &c. &c". Retrieved 29 December 2011.
  43. ^ a b Robert Bruegmann. "Central Heating and Ventilation: Origins and Effects on Architectural Design" (PDF).
  44. ^ Russell, Colin A; Hudson, John (2011). Early Railway Chemistry and Its Legacy. Royal Society of Chemistry. p. 67. ISBN 978-1-84973-326-7. Retrieved 29 December 2011.
  45. ^ Milne, Lynn. "McWilliam, James Ormiston". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/17747. (Subscription or UK public library membership required.)
  46. ^ Philip D. Curtin (1973). The image of Africa: British ideas and action, 1780–1850. Vol. 2. University of Wisconsin Press. p. 350. ISBN 978-0-299-83026-7. Retrieved 29 December 2011.
  47. ^ "William Loney RN – Background". Peter Davis. Archived from the original on 6 January 2012. Retrieved 7 January 2012.
  48. ^ Sturrock, Neil; Lawsdon-Smith, Peter (10 June 2009). "David Boswell Reid's Ventilation of St. George's Hall, Liverpool". The Victorian Web. Archived from the original on 3 December 2011. Retrieved 7 January 2012.
  49. ^ Lee, Sidney, ed. (1896). "Reid, David Boswell" . Dictionary of National Biography. Vol. 47. London: Smith, Elder & Co.
  50. ^ Great Britain: Parliament: House of Lords: Science and Technology Committee (15 July 2005). Energy Efficiency: 2nd Report of Session 2005–06. The Stationery Office. p. 224. ISBN 978-0-10-400724-2. Retrieved 29 December 2011.
  51. ^ a b c Janssen, John (September 1999). "The History of Ventilation and Temperature Control" (PDF). ASHRAE Journal. American Society of Heating Refrigeration and Air Conditioning Engineers, Atlanta, GA. Archived (PDF) from the original on 14 July 2014. Retrieved 11 June 2014.
  52. ^ Tredgold, T. 1836. "The Principles of Warming and Ventilation – Public Buildings". London: M. Taylor
  53. ^ Billings, J.S. 1886. "The principles of ventilation and heating and their practical application 2d ed., with corrections" Archived copy. OL 22096429M.
  54. ^ "Immediately Dangerous to Life or Health Concentrations (IDLH): Carbon dioxide – NIOSH Publications and Products". CDC. May 1994. Archived from the original on 20 April 2018. Retrieved 30 April 2018.
  55. ^ Lemberg WH, Brandt AD, and Morse, K. 1935. "A laboratory study of minimum ventilation requirements: ventilation box experiments". ASHVE Transactions, V. 41
  56. ^ Yaglou CPE, Riley C, and Coggins DI. 1936. "Ventilation Requirements" ASHVE Transactions, v.32
  57. ^ Tiller, T.R. 1973. ASHRAE Transactions, v. 79
  58. ^ Berg-Munch B, Clausen P, Fanger PO. 1984. "Ventilation requirements for the control of body odor in spaces occupied by women". Proceedings of the 3rd Int. Conference on Indoor Air Quality, Stockholm, Sweden, V5
  59. ^ Joshi, SM (2008). "The sick building syndrome". Indian J Occup Environ Med. 12 (2): 61–64. doi:10.4103/0019-5278.43262. PMC 2796751. PMID 20040980. in section 3 "Inadequate ventilation"
  60. ^ "Standard 62.1-2004: Stricter or Not?" ASHRAE IAQ Applications, Spring 2006. "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2014. Retrieved 12 June 2014.cite web: CS1 maint: archived copy as title (link) accessed 11 June 2014
  61. ^ Apte, Michael G. Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994–1996 BASE study data." Indoor Air, Dec 2000: 246–58.
  62. ^ a b c Stanke D. 2006. "Explaining Science Behind Standard 62.1-2004". ASHRAE IAQ Applications, V7, Summer 2006. "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2014. Retrieved 12 June 2014.cite web: CS1 maint: archived copy as title (link) accessed 11 June 2014
  63. ^ Stanke, DA. 2007. "Standard 62.1-2004: Stricter or Not?" ASHRAE IAQ Applications, Spring 2006. "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2014. Retrieved 12 June 2014.cite web: CS1 maint: archived copy as title (link) accessed 11 June 2014
  64. ^ US EPA. Section 2: Factors Affecting Indoor Air Quality. "Archived copy" (PDF). Archived (PDF) from the original on 24 October 2008. Retrieved 30 April 2009.cite web: CS1 maint: archived copy as title (link)
  65. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
[edit]

Air Infiltration & Ventilation Centre (AIVC)

[edit]
  • Publications from the Air Infiltration & Ventilation Centre (AIVC)

International Energy Agency (IEA) Energy in Buildings and Communities Programme (EBC)

[edit]
  • Publications from the International Energy Agency (IEA) Energy in Buildings and Communities Programme (EBC) ventilation-related research projects-annexes:
    • EBC Annex 9 Minimum Ventilation Rates
    • EBC Annex 18 Demand Controlled Ventilation Systems
    • EBC Annex 26 Energy Efficient Ventilation of Large Enclosures
    • EBC Annex 27 Evaluation and Demonstration of Domestic Ventilation Systems
    • EBC Annex 35 Control Strategies for Hybrid Ventilation in New and Retrofitted Office Buildings (HYBVENT)
    • EBC Annex 62 Ventilative Cooling

International Society of Indoor Air Quality and Climate

[edit]
  • Indoor Air Journal
  • Indoor Air Conference Proceedings

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

[edit]
  • ASHRAE Standard 62.1 – Ventilation for Acceptable Indoor Air Quality
  • ASHRAE Standard 62.2 – Ventilation for Acceptable Indoor Air Quality in Residential Buildings

 

Driving Directions in Arapahoe County


Driving Directions From Lowe's Home Improvement to Royal Supply South
Driving Directions From Costco Wholesale to Royal Supply South
Driving Directions From Sheridan High School to Royal Supply South
Driving Directions From Tandy Leather South Denver - 151 to Royal Supply South
Driving Directions From King Soopers to Royal Supply South
Driving Directions From Molly Brown House Museum to Royal Supply South
Driving Directions From Cherry Creek Dam to Royal Supply South
Driving Directions From Blue Grama Grass Park to Royal Supply South
Driving Directions From Denver Zoo to Royal Supply South
Driving Directions From Molly Brown House Museum to Royal Supply South
Driving Directions From Cherry Creek State Park to Royal Supply South

Reviews for Royal Supply South


View GBP

Frequently Asked Questions

Airflow balancing involves adjusting the volume of air distributed through the ductwork of an HVAC system to ensure consistent temperature and comfort levels throughout a mobile home. This process optimizes performance, reduces energy costs, and extends the lifespan of the system components.
Mobile homes often have limited space and unique layouts that can lead to uneven heating or cooling. Proper airflow balancing ensures that all areas receive adequate air distribution, preventing hot or cold spots and improving overall comfort.
Common techniques include adjusting dampers within the ductwork, sealing leaks in ducts, using variable speed blowers for better control, and ensuring registers are unobstructed. Its also crucial to check that return air pathways are not blocked.
Signs indicating a need for airflow balancing include noticeable temperature differences between rooms, high energy bills without increased usage, frequent cycling on/off of the HVAC unit, and uncomfortable drafts or stagnant air areas within your home.